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Temporal Specialization and Generalization 
Christian S. Jensen, Member, IEEE, and Richard Snodgrass, Senior Member, IEEE 

Abstract-A standard relation has two dimensions: attributes 
and tuples. A temporal relation contains two additional orthogonal 
time dimensions, namely, valid time and transaction time. Valid 
time records when facts are true in the modeled reality, and 
transaction time records when facts are stored in the temporal 
relation. 

Although, in general, there are no restrictions between the valid 
time and transaction time associated with each fact, in many 
practical applications, the valid and transaction times exhibit 
more or less restricted interrelationships that define several types 
of specialized temporal relations. The paper examines five different 
areas where a variety of types of specialized temporal relations 
are present. 

In application systems with multiple, interconnected temporal 
relations, multiple time dimensions may be associated with facts 
as they flow from one temporal relation to another. For example, 
a fact may have an associated transaction time indicating when it 
was stored in a previous temporal relation. The paper investigates 
several aspects of the resulting generalized temporal relations, 
including the ability to query a predecessor relation from a 
successor relation. 

The presented framework for generalization and specialization 
allows researchers as well as database and system designers 
to precisely characterize, compare, and thus better understand 
temporal relations and the application systems in which they are 
embedded. The framework’s comprehensiveness and its use in 
understanding temporal relations are demonstrated by placing 
previously proposed temporal data models within the framework. 
The practical relevance of the defined specializations and gener- 
alizations is illustrated by sample realistic applications in which 
they occur. The additional semantics of specialized relations 
are especially useful for improving the performance of query 
processing. 

Index Terms- Query processing, specialized temporal rela- 
tions, generalized temporal relations, taxonomy, time attributes, 
temporal database, temporal semantics, transaction time, valid 
time 

I. INTRODUCTION 

HIS paper explores a variety of specialized semantics T of ordinary and generalized n-dimensional temporal re- 
lations. The time of validity of a fact in a temporal relation 
and the time when the fact was recorded in the relation are 
ostensibly independent. Yet, in many applications of tem- 
poral relations, the two times interact in restricted ways. 
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For example, in the monitoring of temperature during a 
chemical experiment, temperature measurements are recorded 
in the temporal relation after they are valid, as a result 
of the transmission delays. The resulting relation is termed 
retroactive. Alternatively, salary payments recorded in the 
temporal relation of a bank are recorded before the time the 
funds become accessible to employees, resulting in a predictive 
relation. 

We explore a variety of temporal relations with special- 
ized relationships between transaction and valid time [30]. 
Such specialized temporal relations occur in many practical 
applications, and the framework presented here is a means of 
capturing more of the semantics of temporal relations, with 
two primary benefits. Used by designers and researchers, the 
framework conveys a more detailed understanding of temporal 
relations. The additional semantics, when captured by an 
appropriately extended database system, may also be used for 
selecting appropriate storage structures, indexing techniques, 
and query processing strategies. 

When facts flow between temporal relations, several time 
dimensions may be associated with individual facts, resulting 
in generalized temporal relations. For example, consider the 
fact that an employee is given a salary raise by a manager. 
This fact has an associated time when the raise is effective, 
as well as the time when it is entered into the relation on 
the manager’s workstation. Later this fact is copied into the 
centralized departmental personnel relation, and is associated 
with an additional time value, namely, the time when it 
was stored there. Thus, the personnel relation has three time 
dimensions. Sometimes it is possible to query one relation 
from another relation. In the example, it is possible to query the 
time-varying relation on the manager workstation indirectly 
via the personnel relation on the centralized machine. 

The paper extends a previously presented taxonomy on time 
in databases [54], [55].  The previous taxonomy defined three 
kinds of time that could be associated with facts: user-defined 
time (with no database system-interpreted semantics), valid 
time (when a fact is true in reality), and transaction time (when 
a fact is stored in the database). 

Depending on which kinds of time are associated with its 
facts, a relation may be of one of four types. In a snapshot 
relation, a fact has neither a valid time nor a transaction 
time; conventional databases support snapshot relations. In 
a rollback relation, a fact has a transaction time only. Such 
a relation records the current state in addition to each state 
that was current at some past point in time. Associated with 
each state is a transaction time when it became current and a 
transaction time when it ceased to be current. Consequently, 
a rollback relation is ever-growing. While a rollback relation 
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reflects the history of update activities, a historical relation 
models the part of reality modeled by the database. A fact in 
such a relation has valid time only. Finally, a fact in a temporal 
relation has both a valid and a transaction time. A temporal 
relation inherits the properties of both rollback and historical 
relations, and it records both the previous states of the relation 
and the history of reality. 

The four relation types support three kinds of queries. 
All four kinds of relations support current queries, queries 
on the current state of the database; indeed, conventional 
database systems support only this kind of query. Historical 
and temporal relations support historical.queries, which extract 
facts about the history of objects from the modeled reality. 
Rollback and temporal relations support rollback queries, 
which extract facts as stored in the database at some point 
in the past. All four types of relations support queries that 
involve user-defined time; these queries require no special 
support from the database system. 

The original taxonomy falls short in its characterization of 
temporal relations in three ways. First, the taxonomy fails to 
give an adequate understanding of some time-extended rela- 
tions. Many proposals for adding time to databases advocate 
storing a single timestamp per fact (e.g., [28], [49], [58 ] ) ,  
yet it appears that both rollback and historical queries are 
possible in these schemes. However, the taxonomy explicitly 
forbids both kinds of queries on a relation with only one 
timestamp per tuple. Second, because the taxonomy focuses 
on the orthogonality of the three kinds of time, it ignores 
restricted interrelationships between the valid and transaction 
times of facts in temporal relations. Third, the taxonomy 
assumes that each fact has at most one transaction time 
and one valid timestamp (interval or event).’ However, in 
application systems with multiple, interconnected temporal 
relations, multiple time dimensions may be associated with 
facts as they flow from one temporal relation to another. 

In order to address the first and second of the shortcomings, 
we explore the space of restricted interrelations-in between 
the extremes of identity and no interrelation at all-that are 
possible between the valid and transaction times of facts. 
To address the third shortcoming, we provide the means 
for specifying the application system contexts of temporal 
relations. 

The paper is structured as follows. In Section 11, we present 
a general definition and description of a temporal relation. In 
the following section, we examine the kinds of restrictions 
that one might impose on temporal relations, considering 
in turn restrictions on isolated events, collections of events, 
isolated intervals, and collections of intervals. We are not 
concerned here with the semantics of time-varying attributes, 
i.e., how to use timestamp values and stored attribute values to 
derive the value of a time-varying attribute. For example, we 
do not address the issue of how to derive the temperature 
of a chemical reaction at an arbitrary point in time from 
timestamped and stored temperature measurements. We are 
interested only in the semantics of the timestamps themselves. 

’From now on, we use the shorter, but not quite precise, terms “valid 
timestamp” and “transaction timestamp.” 

The framework developed here allows researchers as well 
as database and system designers to precisely characterize, 
compare, and thus better understand specialized temporal 
relations. Many previously proposed time-oriented data models 
do not support general temporal relations, and some support 
only a single time dimension. In Section IV, we use the 
framework to classify existing data models, and we show 
that some 1-D models do in fact support specialized temporal 
relations. To show how the framework may be used to char- 
acterize and compare types of temporal relations, we place the 
temporal relations of all time-oriented data models known to 
the authors within the framework. This also indicates that we 
have succeeded in making the framework comprehensive, an 
important property. 

In Section V, we introduce generalized temporal relations. 
In Section VI, we present two sample application systems 
with embedded, generalized temporal relations. Queries on 
generalized relations may provide the same answers as queries 
on the underlying relations. In Section VII, we examine means 
for the database system to ensure that such queries always 
yield correct results. 

Database systems may exploit the additional semantics of 
temporal relations, captured using the framework, to enhance 
performance. The additional semantics may be used to improve 
display, to aid in integrity checking, and to improve the perfor- 
mance of query processing on the specialized relations. Section 
VI11 contains a brief analysis of how existing approaches to 
efficiently store and retrieve 1-D time-varying data may be 
modified to support specialized temporal relations, thereby 
contributing to the lightly researched area of support for 2-D 
temporal data. We show how much of the research that 
heretofore has applied only to rollback or historical databases 
is also relevant to restricted forms of temporal databases. New 
research efforts targeted at directly supporting 2-D temporal 
data may also exploit the additional semantics discussed in 
this paper. The final section summarizes our work and points 
to future research. 

11. A CONCEPTUAL MODEL OF A TEMPORAL RELATION 

We present a conceptual model of a temporal relation as 
a prelude to the extensions discussed in the remainder of the 
paper. Note that the adjective “temporal” (snapshot, rollback, 
and historical as well) has most often been attributed to 
databases. We take a more general approach and use it only for 
relations, because a single database may consist of relations 
of several types. 

A temporal relation has two orthogonal time dimensions: 
valid time and transaction time. Valid time is used for capturing 
the time-varying nature of the part of reality being modeled 
by the relation. Transaction time models the update activity of 
the relation. Thus, a temporal relation may be envisioned as a 
sequence of historical states indexed by transaction time. 

A temporal relation consists of a set of temporal items, each 
of which records one or more facts about an object (entity or 
relationship) from the part of reality being modeled by the 
temporal relation. Temporal items have the following attribute 
values: 
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item surrogate, 
object surrogate, 
transaction timestamp, 
valid timestamp (interval or event), 
time-invariant attribute values, 
time-varying attribute values, and 
user-defined times. 

An item surrogate is a system-generated unique identifier of an 
item that can be referenced and compared for equality, but not 
displayed to the user [IO], [22]. We discuss item surrogates 
in more detail shortly. 

An object surrogate is a unique identifier of the object 
being modeled by an item. It is used for identifying all the 
database representations of individual real-world objects. At 
any point in time, each real-world object may have, in a single 
relation, a set of associated items, all with the same object 
surrogate (cf. a “lifeline” [46] or a “time sequence” [51]). 
Thus, a relation (cf. a “time sequence collection” [51]) can 
be partitioned into a collection of sets so that items of distinct 
sets have distinct object surrogates, and items of any single set 
have the same object surrogate. This is termed a per surrogate 
partitioning. 

Transaction times are generated by the database system itself 
using monotonically increasing timestamp generators (TSG’s); 
thus, each historical state has an associated unique transaction 
time. The granularity of transaction timestamps is arbitrary, 
as long as uniqueness is ensured. Transaction time models 
the update activity of the temporal relation, and, as such, its 
semantics are entirely independent of the application and the 
enterprise being modeled. The transaction time of’an item is 
the time when the facts recorded by the item were stored in 
the relation. No stored transaction time exceeds the current 
time. The historical state resulting from a transaction remains 
unchanged from the time of that transaction to the time of the 
next transaction. Therefore, the semantics of transaction time 
has been characterized as stepwise constant. 

We associate two transaction times, tt; and it,’, with each 
item e in a temporal relation. The first, tt;, is the time when 
the item e is stored in the relation. The second, ti:, is the 
time when the item e is logically removed from the relation. 
The existence interval for e ,  [ t t ; ,  tt:), is thus the time between 
the transaction time of the historical state in which the item 
first appeared and the transaction time of the historical state 
succeeding the one in which the item last appeared. 

The item surrogate identifies the item for the purpose 
of defining the existence interval (in the database) for the 
item. If a particular event or interval is (logically) deleted, 
and then immediately reinserted, the two resulting items will 
have different item surrogates, allowing the deletion (tt,’) 
and insertion (tt; points to be unambiguously defined. If a 
modification is made by a transaction executed on the database, 
the item in the current historical state is (logically) deleted, and 
a new item, recording the modified information, is stored in 
the new historical state, indexed by the transaction time of the 
transaction making the change. 

The database system uses the transaction times for items for 
implementing the rollback operator [8], [46]. In general, any 
domain of items with an identity relation and a total ordering 

is suitable for transaction time. Example domains include the 
natural numbers and regular data and time values [13]. 

Valid times are usually supplied by the user, but they may 
be system-generated. The valid timestamp of an item records 
when the facts represented by the time-varying and user- 
defined time attribute values are true in reality. Valid times are 
always drawn from the domain of times and data. The items 
of a relation may represent events, in which case the valid 
timestamp of an item is a single valid time value. Altematively, 
the facts represented by the items of a relation may be true for a 
duration of time, in which case the valid timestamp of an item 
is an interval consisting of two valid time values. The valid 
timestamps are used by the database system for implementing 
the time-slice operator [81, [311. 

An item may contain a number of time-invariant attribute 
values, i.e., values that never change. An important example is 
the time-invariant key [40], which, although it resembles the 
object surrogate, is still necessary. Social Security, account, 
and membership numbers are important time-invariant keys 
in many applications. Non-key time-invariant attribute values 
also exist, e.g., race. 

An item may record several facts about a real-world object, 
using several time-varying attribute values. For example, an 
item may record both the title and the salary of an employee. 
Each relation may have an individual valid timestamp granu- 
larity, or the database system may impose a fixed granularity 
on all relations managed by the database system. Although 
different granularities may be ascribed to individual time- 
varying attributes within an item, it may still be necessary 
to fix the (overall) item granularity. 

Just as an item may have several time-varying attribute 
values, it may have several user-defined times. User-defined 
times are drawn from a domain of dates and times with an 
identity relation and a total ordering, i.e., has an associated 
less-than relation. User-defined times may be manually sup- 
plied or computed by an application program. The system 
gives no special semantics to user-defined times, and user- 
defined times are most appropriately thought of as specialized 
kinds of time-varying attribute values [56], [57]. 

In this paper, we focus on the timestamp attributes of 
temporal relations alone. The treatment of the time-varying 
attributes is a separate issue that is beyond the scope of the 
presentation. 

Note that in this conceptual model, we do not assume any 
particular type system on historical states or attributes. In 
particular, while an item is associated with a valid timestamp, 
the model makes no mention of whether tuple timestamping 
or attribute-value timestamping is employed. Neither do we 
assume a particular data model; items could be tuples in a 
relational database [9], records in a network database [I l l ,  
or events in a time sequence collection [51]. Finally, the 
conceptual model of a sequence of historical states does 
not imply (nor disallow) a particular physical representation. 
For example, a temporal relation may be represented as a 
collection of tuples with an event or interval valid timestamp 
and an interval transaction timestamp [53], or with one or 
two valid timestamps and three transaction timestamps [8], 
as tuples containing attributes timestamped with one or more 
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finite unions of intervals (termed temporal elements [ 17]), and 
as a backlog relation of insertion, modification, and deletion 
operations (tuples) with single transaction timestamps [29] or 
with time warp attributes [62]. 

111. SPECIALIZED TEMPORAL RELATIONS 

In this section, we characterize temporal relations according 
to the interrelations of their timestamps. In Sections 111-A and 
111-B, we consider singly stamped times (event stamping), and 
in Sections 111-C and 111-D, we consider doubly stamped items 
(interval stamping). In Section 111-A and 111-C, we characterize 
relations considering the timestamps of individual times in iso- 
lation, and in Section 111-B and 111-D, we characterize relations 
considering the interrelations of timestamps of distinct items. 
In Section 111-E, we present a final, orthogonal specialization 
of temporal relations. Then, in Section 111-F, we relate the 
specializations of event and interval temporal relations. In 
Section 111-G, we apply properties on a per-relation basis 
to portions of a relation. We provide examples for most of 
the specialized temporal relations defined here. The section 
concludes with a summary. 

All the definitions of relation types in this section are 
intentional definitions; i.e., in order for a relation schema to 
have a particular type, all its possible (nonempty) extensions 
must satisfy the definition of the type. The restrictions usually 
apply only to the historical state in which the item was 
inserted or the historical state in which the item was logically 
deleted (i.e., the one following the historical state in which 
the item last appears). Throughout we assume that the valid 
and transaction timestamps are drawn from the same domain, 
which must be totally ordered. We do not consider in this 
section transaction time domains such as version numbers that 
cannot be compared with valid time. 

The specializations presented in this paper apply to temporal 
relations, i.e., sets of items, and they are all defined in terms of 
an ordered pair of timestamp attributes. Specializations apply 
to any ordered pair of timestamp attributes. The natural choice 
is the pair consisting of the primary transaction time attribute 
and the valid time attribute, both of which are present in all 
temporal relations. 

Just as the specializations may be applied to an entire 
relation, i.e., on a per-relation basis, they may be applied in 
tum to each partition of a relation, i.e., on a per-partition 
basis. This is true because the partitions are sets of items. 
Specifically, a relation satisfies a specialization on a per- 
partition basis if every partition of the particular partitioning 
in turn satisfies the specialization on a per-relation basis. 
Although many partitioning are possible, the most useful 
partitioning is the per-surrogate partitioning mentioned in the 
previous section. It is solely for simplicity that we state 
explicitly specializations on mainly a per-relation basis. In 
fact, the application of the specializations on a per-partition 
basis may, in many situations, prove to be more relevant, as 
discussed in Section 111-G. 

By its very nature, a taxonomy should be comprehensive. 
While striving toward achieving this, we have attempted 
to include only specializations that are of practical interest. 

We show in Section 111-A that with some restrictions, the 
taxonomy based on isolated events is complete in that all 
possible interactions are accommodated. The interevent-based 
taxonomy is restricted to cover the concepts of sequential- 
ity and regularity, and the isolated interval-based taxonomy 
covers only regularity. The interinterval-based taxonomy dis- 
tinguishes between temporal relations, where items successive 
in transaction time have valid time intervals related in one of 
the 13 possible ways of ordering two intervals. In this sense, 
the taxonomy is comprehensive within its scope. 

The space of specialized temporal relations in the taxonomy 
may be too large for some uses. To address this potential 
problem, we have organized the specializations in general- 
ization/specialization hierarchies. Applications that require a 
small number of specializations may simply consider only the 
more general specializations. 

A .  Taxonomy on [solated Events 

In this section, we consider only events that take place at 
an instant of time in reality. Let R be a temporal relation, 
and let e be an item of R. Each item e has a single valid 
time, vte, indicating when the event took place in reality. We 
consider only a single transaction time, tt , ,  which is either 
the insertion or the deletion time, that is, either tt; or tt:. 
Each property (e.g., retroactive, where an item is valid before 
it is operated on in the database) is relative to one of these 
two times. For example, it is possible for a relation to be 
deletion retroactive, but not insertion retroactive. As discussed 
earlier, a modification consists of a deletion followed by an 
insertion. If a relation is, say, deletion retroactive and insertion 
retroactive, it can also be considered modification retroactive. 
The definitions that follow mention only a single valid time 
vt, and a single transaction time tt,. In examples where we 
illustrate the definitions, we assume that tt, is tt; (i.e., we 
consider insertion, not deletion or modification). 

We formally define a number of specialized temporal re- 
lations by restricting the allowed interrelations between valid 
and transaction timestamp values of isolated items. Fifteen of 
the specialized relations are illustrated in Fig. 1 (an altemative 
depiction of subareas of the 2-D valid timehransaction time 
space is given elsewhere [30]). The bold, vertical line in the 
center represents the transaction time, tt,, of an item. The valid 
time of the item may have a certain relationship with this trans- 
action time. The surrounding dotted lines represent bounds. In 
a nonspecialized temporal relation (termed general), there are 
no restrictions on the interrelations of, or correlation between, 
the transaction and valid timestamps of an item. The dots for 
the three last cases in the figure symbolize specific valid times 
computed in terms of corresponding transaction times. 

Definition: Temporal relation R is retroactive if 

Ve E R (vt, 5 t t , ) .  

Thus, the values of an item are valid before they are entered 
into the relation; i.e., the event occurred before it was stored. 
Retroactive relations are common in monitoring situations, 
such as process control in a chemical production plant, where 
variables such as temperature and pressure are periodically 
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retroactive 

delayed retroactive 

predictive 

early predictive 

retroactively bounded 

strongly retroactively bounded 

delayed strongly retroactively bounded 

strongly predictively bounded 

early strongly predictively bounded 

strongly bounded 

predictively bounded 

general 

degenerate 

retroactively determined 

predictively determined 

4 valid time c 

Fig. 1. Possible values of the valid timestamp relative to the transaction timestamp. 

sampled and stored in a database for subsequent analysis. 
Further, it is often the case that some (non-negative) minimum 
delay between the actual time of measurement and the time a 
storage can be determined. For example, a particular setup for 
the sampling of temperatures may result in delays that always 
exceed 30 s. This gives rise to a delayed retroactive relation. 

Definition: Temporal relation R is delayed retroactive with 
bound At 2 0 if 

Ve E R (vt, 5 tt, - At). 

In this and in the other specializations that refer to a time 
bound At, this time bound is a duration that may be fixed in 
length (e.g., 30 s, one day) or calendar-specific. An example 
of the latter is one month, where a month in the Gregorian 
calendar contains 28 to 31 days, depending on the data to 
which the duration is added or subtracted. 

Definition: Temporal relation R is predictive if 

Ve E R (vt ,  2 t t , ) .  

Thus, the values of an item are not valid until some time 
after they have been entered into the relation. An example is a 
relation that records direct deposit payroll checks. Generally, 
a copy of this relation is made on magnetic tape near the end 
of the month, and is sent to the bank so that the payments can 
be effective on the first day of the next month. Analogously 
with the delayed retroactive temporal relation that specializes 
the retroactive temporal relation, the early predictive temporal 
relation is the specialization of the predictive temporal relation. 

Definition: Temporal relation R is early predictive with 
bound At 2 0 if 

Ve E R (vt, 2 tt, + At). 

The direct deposit payroll check relation is an example if the 
tape must be received by the bank at least, say, three days 
before the day on which the deposits are to be made effective. 
Also, this type of relation may be encountered within early 
warning systems where warnings must be received sometime 
in advance. 

In items of retroactively bounded temporal relations, the 
validtimestamp never is less than the transaction timestamp by 
more than a bounded time interval. In all bounded, delayed, 
and early relations, the bounds are fixed at schema definition 
time. 

Definition: Temporal relation R is retroactively bounded 
with bound At 2 0 if 

Ve E R (vt,  2 tt, - At). 

Note that in a retroactively bounded relation, the valid time- 
stamp may exceed the transaction timestamp. An example is 
a relation recording the project to which each employee is 
assigned. Although assignments may be recorded arbitrarily 
into the future, an assignment is required to be recorded in the 
database no later than one month after it is effective. 

Definition: Temporal relation R is strongly retroactively 
bounded with bound At 2 0 if the following is true: 

'de E R (tt,  - At 5 ut ,  5 tt,). 
The sample relation just discussed is strongly retroactively 
bounded if future assignments are not stored in the relation. 
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In a delayed strongly retroactively bounded relation, an 
additional upper bound (minimum delay) is also imposed. 

Definition: Temporal relation R is delayed strongly retroac- 
tively bounded with bound At, 2 0 and At2 2 0, where 
At1 5 At2 , if 

Ve E R (tt, - At1 5 ut, 5 tt, - At,). 

The relation that records the assignments of employees is an 
example of this type of relation if only past assignments are 
recorded, e.g., if assignments are recorded at most one month 
after they were effective and if it takes at least two days from 
the time when an assignment is finished until this is known 
by the data entry clerk. 

The strongly predictively bounded and the early strongly 
predictively bounded relations are symmetrical to the two pre- 
vious specialized temporal relations. Here, the valid timestamp 
is in a bounded duration after the transaction timestamp, and 
the early specialization also adds a (positive) lower bound on 
the valid timestamp. 

Definition: Temporal relation R is strongly predictively 
bounded with bound At 2 0 if the following is true: 

Ve E R (ti, 5 vt, 5 tt, + At). 

Definition: Temporal relation R is early strongly predic- 
tively bounded with bounds At1 2 0 and At2 2 0, where 
At1 5 At2, if 

Ve E R (tt, + At1 5 vt, 5 tt, + At,). 

Direct deposit of paychecks illustrates both types of special- 
ization. The company wants the checks to be valid on the first 
of the month, but it wants also to make the tape to be sent 
to the bank as late as possible, generally at most one week 
before the end of the month. In addition, the bank needs the 
tape at least three days in advance. 

Definition: Temporal relation R is strongly bounded with 
bounds At, 2 0 and At2 2 0 if the following is true: 

Ve E R (tt, - At1 5 vt, 5 tt, + At,). 

Here, the valid timestamp may deviate only from the trans- 
action timestamp within both upper and lower bounds. Intu- 
itively, information concems only the current situation, except 
that recently valid information and information valid in the 
near future can be recorded and updated. An example is 
an accounting relation recording the current month’s transac- 
tions. Corrections to entries of previous months are stored as 
compensating transactions in the current month; transactions 
conceming future months are made to a separate relation. 

Definition: Temporal relation R is predictively bounded 
with bound At 2 0 if 

Ve E R (vt, 5 tt, + At). 

Note that in a predictively bounded relation, the valid time- 
stamp may be less than the transaction timestamp. In such 
relations, only information conceming the past and the near- 
term future may be stored. An example is an order database 
in which pending orders, constructed by company policy to 
be no more than 30 days in the future, are stored along with 

previously filled orders. This kind of relation is symmetric 
with retroactively bounded relations. 

Definition: Temporal relation R is degenerate if 

V e  E R (vt, = tt,). 

An example is a monitoring situation in which there is no time 
delay (within the timestamp granularity) between sampling a 
value and storing it in the database. At the implementation 
level, a degenerate temporal relation can be advantageously 
treated as a rollback relation because relations are append-only 
and items are entered in timestamp order. This is discussed 
in more detail in Section VIII. The process of recording 
degenerate relations is referred to as the asynchronous method 
[621. 

A mapping function m for a relation R takes as argument an 
item e of a relation and retums a valid timestamp, as computed 
by using any of the attributes of e, excluding vt,, but including 
the surrogate and transaction timestamp attributes. Sample 
mapping functions include ml(e) = tt; + At (“valid after 
a fixed delay”), m2(e) = Ltt; - AtJhrs (“valid from the most 
recent hour”), and m3(e) = rttL1 day + 8 hrs. (“valid from the 
next closest 8:OO A.M.”). 

Definition: Temporal relation R is determined with map- 
ping function m if the following is true: 

Ve E R (vte = m(e)). 

Similarly, a relation is undetermined if such a function does not 
exist. For each of the undetermined specialized temporal rela- 
tions defined already in this section, there exists a determined 
version. To illustrate, we consider three determined versions. 

Definition: Temporal relation R is retroactively determined 
with mapping function m if the following is true: 

Ve E R (vte = m(e) A m(e) 5 tt,). 

Thus, a determined relation has a given type if its mapping 
function obeys the requirement of the type. For example, a 
relation is retroactively determined if each item is valid from 
the beginning of the most recent hour during which it was 
stored. 

Definition: Temporal relation R is predictively determined 
with mappingfunction m if the following is true: 

Ve E R (vt, = m(e) A m(e) 2 tt,). 

For example, a relation is predictively determined if it is 
valid from the next closest 8:OO A.M. Such a relation might 
be relevant in banking applications for deposits that are not 
effective until the start of the next business day. 

For further illustration, we present a bounded version. 
Definition: Temporal relation R is strongly retroactively 

bounded determined with mapping function m and bound 
At 2 0 if 

Ve E R (vt, = m(e) A tt, - At 5 m(e) 5 tt,). 

The examples given previously were in fact bounded. 
The generalizatiordspecialization structure of the specialized 

temporal relations defined above is presented in Fig. 2. A 
relation type can be specialized into any of the successor 
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Fig. 2. Generalization/specialization structure of the event-based taxonomy 

relation types, and a relation type inherits all the properties 
of its predecessor relation types (as well as adding additional 
properties). For clarity, we have included only undetermined 
relation types; there exist determined counterpart of all the 
undetermined specialized temporal relations, e.g., strongly 
bounded determined. 

The isolated event-based taxonomy is complete with certain 
assumptions. Note that the specializations in this section 
correspond to regions of the 2-D space spanned by transaction 
and valid time [30]. There are five assumptions. First, we are 
interested only in undetermined relationships. Second, we are 
interested only in regions bounded by lines parallel to the 
line tt, = vt,. This means that we do not wish to consider 
relationships that are dependent on absolute values of the 
timestamps, such as, say, the specialization that vt, 2 2 . tt,. 
Third, we consider only relative restrictions on the relationship 
between valid and transaction times. In combination with the 
previous assumptions, this implies that only three kinds of 
lines are of interest when describing restricted regions of the 
2-D space, namely, lines parallel to tte = vt, for which 
(1) vt, > tt,, (2) vt, = tt , ,  or (3) vt, < tt,. Absolute 
bounds may be added later by the user of the taxonomy. 
Fourth, we consider only <-versions; pure <-versions and 
mixed versions may be obtained easily. Fifth, only connected 
regions are considered. Such resigns may be used as building 
blocks to form nonconnected regions. As a consequence of 
the assumptions, at most two lines are required,for describing 
any possible region. 

With zero lines, we can form no restrictions. Thus, we have 
a general temporal event relation. With one line, there are two 
distinct regions for each of the three line types, resulting in 
six distinct, specialized temporal event relations: early predic- 
tive and predictively bounded, predictive and retroactive, and 
retroactively bounded and delayed retroactive, respectively. 
With two lines, there are five possibilities corresponding to the 
combinations (using the numbering of the previous paragraph): 
(1) and (1) (early strongly predictively bounded), (1) and 
(2) (strongly predictively bounded), (1) and (3) (strongly 
bounded), (2) and (3) (strongly retroactively bounded), and 

(3) and (3) (delayed strong retroactively bounded). The result 
is a total of 11 types of specialized temporal relations, each 
of which is included in the taxonomy. 

B .  Interevent-Based Taxonomy 

The previous definitions were based on predicates on in- 
dividual event timestamped items. A relation schema had 
a given property if each individual item of any extension 
meaningful in the modeled reality of the schema satisfied 
the relevant predicate. We now define restrictions on relation 
schemas based on the interrelationships of multiple event 
timestamped items in all possible extensions. We examine 
two aspects: orderings between items and regularity. In this 
and later sections, we continue to assume in the examples and 
explanations that tt, is tt;. Recall that though the definitions 
are made on a per-relation ("global") basis, they may also be 
made on a per-partition basis with an arbitrary partitioning, 
e.g., the per-surrogate partitioning. 

Definition: Temporal relation R is globally sequential if the 
the following condition2 is true: 

Ve E R 'de' E R (tt, < tt,, 
(max(tt,, ut,) 5 min(tt,r, ut, ! ) ) ) .  

In globally sequential relations, each event must occur and be 
stored before the next event occurs or is (predictively) stored. 
Therefore, valid time can be approximated with transaction 
time, yielding an append-only relation that can support histor- 
ical (as well as transaction time) queries. Such relations may 
be viewed as approximations to degenerate relations. As an 
example of the application of this property on a per-partition 
level, R is per-surrogate sequential if 'dx E  TI^( R)  , g ldTa :  ( R )  
is globally sequential, where Id is the surrogate attribute. 

Definition: Temporal relation R is globally nondecreasing 
if the following is true: 

Ve E R 'de' E R (tt, < tt,, + vt, < v t , ~ ) .  

2Altematively, we could define sequentiality as follows. Ve E R Vr'  E 
R ( ( P  = e ' )  V (niax(tt,,at,) 5 min(tt,t ,ot,t)) V (min(tt,,ot,) 2 
max(tt,,. u t e / ) ) )  
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In such a relation, items are entered in valid timestamp 
order. Sequentiality is generally a stronger property than 
nondecreasing. However, if the relation is degenerate, then 
the two properties are identical. 

Definition: Temporal relation R is globally nonincreasing if 

‘de E R Ve’ E R (t t ,  < tt,, =+ vt, 2 vtet). 

In such relations, as transaction time proceeds, we enter 
information that is valid further and further into the past. An 
example is an archeological relation that records information 
about progressively earlier periods uncovered as excavation 
proceeds. 

Regularity-where transaction time, valid time, or both 
times occur in regular intervals-is often encountered in 
temporal relations. 

Defnition: Temporal relation R is transaction time event 
regular with time unit At 2 0 if the following is true: 

Ve E R Ve‘ E R 3k$(tt,  = tt,! + ICE’At). 

Note that the transaction timestamps of successively stored 
items need not be evenly spaced; they are merely restricted 
to be separated by an integral multiple (IC: ) of a specified 
duration, At. An example is a periodic sampling of some 
physical variable such as temperature. The process of record- 
ing transaction time event regular relations is referred to as 
the synchronous method [62].  

Definition: Temporal relation R is valid time event regular 
with time unit At 2 0 if the following is true: 

Ve E R Ve’ E R 3ICz‘(vt, = vt,, + k:’ At). 

The concept of granularity of valid timestamps can be ex- 
pressed in terms of this property. For example, if the valid 
timestamp granularity is 1 s, then, equivalently, the relation is 
valid time event regular with the time unit 1 s. 

Definition: Temporal relation R is temporal event regular 
with time unit At 2 0 if the following is true: 

Ve E R Ve‘ E R 3k,“’(vt, = v t , ~  +IC:‘ At Att, = tt,, + kz’ At). 

A periodic degenerate relation is triviapy temporal event 
regular. Note that the same values of IC: must satisfy both 
transaction and valid time. Therefore, temporal event regular 
is more restrictive than both valid and transaction time event 
regular together. Next we define strict versions of the three 
different variants of regular specialized temporal relations. 

Definition: Temporal relation R is strict transaction time 
event regular with time unit At 2 0 if the following is true: 

Ve E R ( l e ’  E R (tt,, = tt, + At 
A 1 3 e ”  E R (t t ,  < tt,!! < t t , , ) )  

V -de‘ E R (rtef > t t , ) ) .  

Thus, either e’ is the next item after e, or e is the last item 
stored. 

globally sequential 

Fig. 3. 
omy. Part I: Orderings. 

Generalization/specialization structure of the interevent-based taxon- 

Definition: Temporal relation R is strict valid time event 
regular with time unit At 2 0 if the following is true: 

Ve E R (3e’ E R (vt,, = vt, + At 
A 4 e ”  E R - {e, e’}(vt, 5 vt,!! 5 vt ,!))  

V 13e ’  E R (vt,, > v t , ) ) .  

This definition is slightly more complicated than the previous 
one, because we want to disallow items with identical valid 
items (which is already impossible with transaction time). 

Definition: Temporal relation R is strict temporal event 
regular with time unit At 2 0 if the following is true: 

’de E R ((3e’ E R (tt,! = tt, + At A vt,! = vt, + At 
A 1 3 e ”  E R (t t ,  < t t , ~ ~  < tt,,) 
A d e ’ ’  E R - {e, e’}(vt, 5 Vt,” 5 N e t ) ) )  

V ( d e ’  E R (tt,r > tt,) A +le’ E R (Vtej > v te ) ) ) .  

Although somewhat complex, this definition is just the com- 
bination of the two previous definitions using the same time 
unit for both valid and transaction time. 

Note that if relation R’ is transaction time event regular with 
time unit At1 and valid time event regular with time unit Atz, 
then R’ is also temporal event regular, with the temporal time 
unit At3 being some common divisor of At1 and Atz. Thus, if 
At, = 28 s and At2 = 6 s, then At3 = 2 s (largest common 
divisor). For the strict case, however, valid and transaction 
time event regulariy does not imply temporal event regularity. 

Analogously with the ordering properties, the above reg- 
ularity properties can be defined in a global or per-partition 
fashion. However, the nonstrict versions have the additional 
property (not shared with ordering and strictness) .that the per- 
partition variant implies the global variant. Note that regularity 
is a different property than periodicity, which encodes facts 
such as something is true from 2 P.M. to 4 P.M. during 
weekdays [ 391. 

All of these characterizations are orthogonal to those given 
in the previous section for individual events, except that a 
degenerate event relation is necessarily globally ordered. 

The generalization/specialization structures for the temporal 
relations defined in this section are outlined in Figs. 3 and 4. 
The two structures are orthogonal. 

C .  Taonomy on Isolated Intervals 

We now tum to interval relations, that is, those relations 
in which, for each item e of the relation, the valid time is 
an interval, [vtL,vt:). The transaction times of the item, tt; 
and tt:, are defined as before. As in Section 111-B, IC (possibly 
indexed) is an integer. - 



962 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 6, DECEMBER 1994 

general 

transaction time d event regular valid time event regular 

strict temporal event regular 

Fig. 4. Generalization/specialization structure of the interevent-based taxonomy. Part 11: Regularity. 

The previous characterizations of events may also be applied 
to either v c  or vt:. For example, if an interval is stored as 
soon as it terminates, a designer may state that the interval 
relation is vp-retroactive and vti-degenerate. If the relation 
is, say, vt‘-retroactive and vti-retroactive, it may simply be 
termed retroactive. 

A temporal relation is transaction time regular, valid time 
regular, or temporally regular if the transaction time inter- 
vals, valid time intervals, or both transaction time and valid 
time intervals are regular, respectively. Note again that these 
properties concem durations rather than starting events, and 
that they can be calendar-specific, e.g., one month. 

Definition: Temporal relation R is transaction time interval 
regular with time unit At 2 0 if the following is true: 

Ve E R 3ke(tt,’ = tt; + Ice&). 

Definition: Temporal relation R is valid time interval reg- 
ular with time unit At > 0 if the following is true: 

Ve E R 3ke(vt: = vt; + k,At). 

Altematively, the duration of all intervals in such a relation is 
an integral multiple of a specified time unit. An example is a 
relation recording new hires and terminations that observes 
a company policy that all such hires and terminations be 
effective on either the first or the fifteenth of each month. 

Definition: Temporal relation R is temporal interval regu- 
lar with time unit At if the following is true: 

Ve E R 3kL 3kz(tt: = tt; + ICiAt A vt,’ = vt; + k:At). 

Hence, the time unit must be identical for both transaction 
and valid time. 

The situations where all intervals have the same length 
are interesting special cases of the above definitions with 
IC,, ki, and k: equal to 1. We term these special cases strict 
transaction time interval regular, strict valid time interval 
regular, and strict temporal interval regular. 

Recall that the concept of regularity may be applied to 
relations on a per-partition basis as well as globally (as 
discussed at the beginning of this section). 

The specializations in the previous section concem event re- 
lations, and the specializations in this section concem interval 
relations; they are quite different. However, the general- 
ization/specialization structure of the specializations in this 
section is identical to that of the previous section, as illustrated 
in Fig. 4, with the exception that “event” is replaced by 
“interval.” 

D. Interinterval-Based Taxonomy 

As with events, we distinguish restrictions that are applied 
individually to all intervals and restrictions on the interrelation- 
ship between multiple intervals in a relation. The restrictions 
listed below apply to relations, but they may be applied on 
a per-partition basis as well. Many of these same terms also 
apply to event relations, and where defined in Section 111-B. 
Context should differentiate these uses. 

Definition; Temporal relation R is globally sequential if the 
following is true: 

Ve E RVe’ E R (tt, < tt,! + 
(max(tt,, vt:) 5 min(tt,t, ~ 6 , ) ) ) .  

In such a relation, each interval must occur and be stored 
before the next interval commences. An example involves 
the relation previously discussed that records the weekly 
assignments for employees. If the assignment of the next week 
is recorded during the weekend, then this relation will be 
per-surrogate sequential. 

A relation is nondecreasing if items are entered in valid 
timestamp order, and it is nonincreasing if items are entered 
in reverse valid timestamp order. 

Definition: Temporal relation R is globally nondecreasing 
if 

Ve E R Vel E R (tt, < ttet + vt: 5 vt:,). 
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Fig. 5. Generalizatiodspecialization structure of the interinterval-based taxonomy. 

Concerning the example just discussed, let us now record on 
each Thursday the next week’s assignment. In this case, the 
transaction time (i.e., Thursday) of the next week’s assignemnt 
(on a per-surrogate basis) will occur during the valid time 
interval of the current week’s assignment, and the relation 
will be per-surrogate nondecreasing. 

As with events, sequentiality is a stronger property than 
nondecreasing. 

Definition: Temporal relation R is globally nonincreasing if 

V e  E R Ve’ E R (tt ,  < tt,, + vt;, 5 v t z ) .  

Definition: Temporal relation R is globally contiguous if 
the following is true: 

V e  E R (3’ E R - {e}(vt,’ = v& A tt, < tt,, 
A 13e” E R - { e ,  e’} 

( t t e  < t t e f ,  < t t e ! ) )  

V Ve’ E R - {e}(vtL 2 vt: ,)) .  

This definition states that in a globally contiguous relation, the 
end of one event coincides with the start of the next event that 
is stored, unless the event is the last one in the sequence, in 
which case it occurs after all the other events. An example is 
given in Section 111-F. 

Allen has demonstrated that there exist a total of 13 possible 
relationships between two intervals [7]. These relationships 
may be denoted before, meets, overlaps, during, starts,finishes, 
equal, and the inverse relationships for all but equal, e.g., 
inverse before and inverse finishes. For each such relationship, 
X, we can define a property successive transaction time X that 
requies that items, successive in transaction time, are related 
by X. For example, the property successive transaction time 
overlaps requires that intervals that are adjacent in transaction 
time overlap in valid time, ensuring that the next item began 
before the previous one completed. 

Definition: Temporal relation R is successive transaction 
time X if the following is true: 

Ve E R (3e’ E R - {e} (v t ,Xvt , ,A  tt, < f r e t  

A 7 3 e ” E  R - { e , e ’ } ( t t , < t t , ~ ~  < f r e t ) )  

V V e ’ E R -  { e }  ( t t ,  2 t t , ! ) ) .  

Of these, the most interesting is successive transaction time 
meets, which is defined above as globally contiguous. 

general temporal 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

transaction time incomplete 
I 
I 
I 
I 
I 

I 
I 
I 
I 

historical 

Fig. 6. 
temporal relations. 

Generalizatiodspecialization structure of transaction time incomplete 

Fig. 5 illustrates the specilizatiordgeneralization structure 
for the properties discussed above. In this figure, successive 
transaction time is abbreviated ‘st-’, and successive transaction 
time inverse is abbreviated ‘sti-’. 

E .  Transaction Time Incompleteness 

There is one type of restriction, orthogonal to the previously 
mentioned restrictions, that has not yet been discussed, namely, 
transaction time incompleteness. 

A temporal relation must record all previous historical states 
to permit arbitrary rollback. A temporal relation is transaction 
time incomplete if some previous historical states are missing. 
At one end of the spectrum of incompleteness, we find a 
historical relation (i.e., only the current historical relation is 
recorded). At the other end, we have a complete temporal 
relation where all historical relations that were current at 
some point are retained. In between, many options exist. Such 
options include storing every nth historical state, saving the 
historical state at periodic intervals (yielding a transaction 
time event regular relation), and saving the historical state 
at arbitrary, manually specified transaction times. 

The specialization/generalization structure of transaction 
time incomplete temporal relations is shown in Fig. 6, where 
the dashed lines indicate intermediate, incomplete relations. 

F .  Event and Interval tnterrelationships 

Let us consider how event and interval properties relate to 
one another. A common implementation technique is to store 
incoming events in a backlog relation [251,2] and derive 
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parameterized 

Fig. 7. Four types of specializations on temporal relations. 

an interval relation by interpreting each event as ending an 
interval started by the previous event (on a global or per- 
partition basis) and starting a new interval. An example is an 
event relation recording promotions and their associated title 
and salary changes; the resulting interval relation records when 
the salaries and titles were in effect. 

If the backlog of events is globally (alternatively, per- 
partition) sequential, then the derived interval relation will 
be globally (per-partition) sequential. The same holds for 
globally/per-partition ordered. If the backlog is transaction 
time (valid time, temporal) event regular, then the derived in- 
terval relation will be interval regular. In all cases, the derived 
interval relation will be globally (per-partition) contiguous. 
Hence, our example interval relation will be per-partition 
ordered, sequential, and contiguous. 

Also observe that a temporal interval relation is valid time 
interval regular or temporal interval regular if both its starting 
(w t ‘ )  and ending (w t ’ )  times are valid time event regular 
or temporal event regular, respectively. In such relations, the 
starting and ending time of each item are related to the starting 
and ending time of other items by an integral multiple of a 
duration, At. 

G .  Interrelations Between Per-Relation and 
Per-Partition Specializations 

We now consider the interrelations of specializations when 
applied on a per-relation basis, on the one hand, and when 
applied on a per-partition basis, on the other. 

For a specialization (e.g., retroactively bounded with bound 
At) on a relation on hold on a per-relation basis, the set of all 
items in the relation must satisfy the specialization. In order 
for a specialization to hold on a per-partition basis, for some 
given partitioning (e.g., per-surrogate), the specialization must 
be satisfied in turn by the set of items of each partition of the 
partitioning. 

We proceed by dividing specializations into four categories, 
as shown in Fig. 7. A specialization is per-item if it applies 
to individual items in isolation (cf. Sections 111-A and III- 
C ) ;  otherwise, it is interitem (cf. Sections 111-D and 111-E). 
Orthogonally, specializations can be simple, e.g., “retroactive,” 
or they can be parameterized. For example, “retroactively 
bounded with bound At” is parameterized with parameter At. 

Let us assume that a relation schema in tum satisfies 
each of the four types of specializations on a per-relation 
basis. Then we consider how to characterize the relation 
schema on a per-partition basis. Let R be a sample extension 
of the relation schema. If R satisfies a per-item, simple 
specialization on a per-relation basis, then R also satisfies 
that specialization on a per-partition basis. This observation, 
and each of the observations in the following, is true for 
any partitioning and any specialization. For example, if R 
is retroactive per relation, then R is also retroactive on a 

per-surrogate basis. Let an arbitrarily chosen partitioning be 
given that divides R into k partitions. If R satisfies a per- 
item, parameterized specialization with parameter x, then 
R satisfies that specialization on a per-partition basis with 
parameters x1,52, . . . , xk, where each of the x; are at least 
as restrictive as x. For example, if R i s  retroactively bounded 
with bound At per relation, then there exists tighter bounds 
At, ,  At,,  . . . , Atk, so that R is retroactively bounded with 
these bounds per surrogate. 

We now assume that a relation R satisfies specializations 
of the four types on a per-partition basis for some given, 
arbitrarily chosen partitioning that divides R into IC partitions. 
Again, the particular specialization may be chosen arbitrarily. 
If R satisfies a per-item, simple specialization per partition, 
then R also satisfies that property on a per-relation basis. If R 
satisfies, on a per-partition basis, a per-item, parameterized 
specialization with parameters x1,22, . + . , x k ,  then R also 
satisfies the specialization on a per-relation basis, and the 
parameter x is equal to the least restrictive parameter among 
the xi. 

In the remaining four cases where we consider interitem 
specializations instead of per-item specializations, no general 
statements may be made. 

H .  Summary 

We have presented an extensive taxonomy of specialized 
properties of temporal relations. The practical relevance of the 
definitions is emphasized by examples. The properties apply 
to either event or interval temporal relations. A relation may 
have specialized per-item properties (Sections 111-A and III- 
C )  as well as specialized interitem properties (Sections 111-B 
and 111-D). A relation may also be transaction time incomplete 
(Section 111-E). All three types of properties may be applied on 
either a per-relation or on a per-partition basis. Partitionings 
may be chosen arbitrarily, but the most important partitioning 
is the per-object surrogate partitioning. 

We described how an event relation may be naturally 
interpreted as an interval relation, and we discussed how the 
event properties would transform into corresponding interval 
properties. Additionally, we described how per-item proper- 
ties, simple as well as parameterized, when satisfied on a 
per-relation basis, would essentially be satisfied on a per- 
partition basis and, conversely, independently of the particular 
partitioning. 

Iv .  CLASSIFICATION OF EXISTING TEMPORAL 
DATA MODELS 

The taxonomy of specialized temporal relations provides a 
coherent framework that covers all existing temporal relational 
data models known to us, and allows one to more faithfully 
describe, distinguish, and understand these data models. We 
illustrate this by using taxonomy to perform such a characteri- 
zation. We proceed by successively applying greater temporal 
specialization. 

A .  General Temporal Relations 

General temporal relations are found in only a few data 
models [8], [53]. The snapshot mechanism [6] may be ex- 
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tended to support general temporal relations. A snapshot of 
a relation is an independent copy of a current state of that 
relation at the time of the snapshot. Thus, snapshots are 
derived from base relations, but they do not change when 
the underlying base relations change [5], [36]. The snapshot 
mechanism may be applied to a relation in three ways [2]-[4]. 
First, there is the manual snapshot where a generate- 
version command is used to create a shapshot (termed 
a “manual album”). Second, there is the periodic snapshot 
(termed an “automatic album”) where, for example, the user 
may specify, “Keep snapshots for the end of the month for a 
window of 12 months.” Third, there is the successive snapshot 
where the system creates a new snapshot every time the 
underlying relation is updated (termed a “movie”). 

Although Adiba applies only the snapshot mechanisms to 
conventional relations, there is no reason why they cannot also 
be applied to historical relations. Successive snapshots of an 
historical relation (a historical movie) result in a general tem- 
poral relation. Applying the snapshot mechanism manually or 
automatically to historical or conventional relations produces 
specialized temporal relation, as we shall see shortly. 

B .  Retroactive Temporal Relations 

Gadia presents a multidimensional temporal data model that 
is in turn restricted to a 2-D data model with valid and trans- 
action time as the dimensions [18]. In this model, however, 
only data valid in the past may be stored. For example, it is 
impossible to store on May 1 1 ,  1991, the fact, “As of now, Dr. 
Iovanni is hired as an assistant professor from September 1, 
1991, until August 31, 1997.” Therefore, the model does not 
support fully general temporal relations; instead, it supports 
retroactive temporal relations. The restriction to retroactive 
temporal data is inherited from a (retroactive) historical data 
model where event timestamps are used for the modeling of 
real-world activity [ 171. 

Sarda proposes another specialized temporal data model in 
which current facts may be appended and where so-called 
retrospective updates (change to information about the past) 
are possible [45]. Hence, the transaction time is always equal 
to or after the valid time, and, like the previous model, this 
model supports retroactive temporal relations. 

C .  Strongly Retroactively Bounded Relations 

In real-time databases, transactions have hard or firm real- 
time deadlines [l]. If the deadline passes before the transaction 
is executed, the transaction is unscheduled [41]. Hence, the 
transaction time of information read by a transaction associ- 
ated with a deadline must be strongly retroactively bounded; 
otherwise, the transaction deadline makes no sense. Also, the 
transaction time of the information stored or modified by the 
transaction is strongly retroactively bounded, with its bound 
being the bound of the information triggering the transaction 
plus the bound of the deadline, which must be known if it can 
be ensured that deadlines will always be met [41]. 

D. Degenerate Temporal Relations 

Relations representing time sequences and time sequence 
collections of the TSC model [42], 1471, [49], 1511 may be 

classified as degenerate temporal relations. Such sequences 
are totally ordered in time; presumably, facts are recorded 
in the database as soon as they are collected. Among the 
representations given for time sequence collections [48] is 
a per-surrogate contiguous relation that is also per-surrogate 
sequential. 

The POSTGRES data model [43], [60] supports degen- 
erate temporal relations in that facts valid now in the real 
world are stored now, and all past states are retained. The 
POSTGRES query language [59] supports rollback (viewing 
the time dimension as transaction time) and historical time- 
slice (viewing the time dimension as valid time), but does not 
support general historical queries. This query language may be 
viewed alternatively as an extended rollback query language 
or as a highly restricted historical/temporal query language. 

Jensen’s data model is fundamentally a transaction time 
model [25]. Thus, all updates are physically append-only. Only 
event timestamps are possible, and they are unique, increasing, 
and system-supplied. Additionally, the assumption is made 
that time-varying attributes have stepwise constant semantics 
[27], [28]. As a result, the model is appropriate only for 
modeling the history of the update activity of the database. 
However, because it allows for irregular timestamps reflecting 
real time, it may be used as a temporal data model when the 
transaction and valid times of items coincide; hence, it is also 
a degenerate temporal model. Similarly, successive snapshots 
of a conventional relation (a movie) produce a degenerate 
temporal relation [4]. 

In the Applicative Data Model [24], changes cannot be made 
to data that have already been stored; hence, an applicative 
historical relation is a degenerate temporal relation. 

Adiba introduced an append-only relation that may be 
modified using special error-correcting operations [ 31. Without 
the ability to modify, this is a degenerate temporal relation. 
With the ability to change the past, it is an historical relation, 
restricted in that one cannot change or record future events. 

Finally, a variety of data formats are available for time series 
analysis [ 121. Some are degenerate, some are transaction time 
event regular, and most are globally ordered. 

E .  Transaction Time Incomplete Temporal Relations 

When applied to ordinary relations, manual and periodic 
snapshots produce transaction time incomplete degenerate 
relations. Because a snapshot is a copy of the current state 
when the snapshot is made, it is possible to roll back to a 
previously current state if a snapshot was made during the 
time when that state was current. Thus, unless a snapshot is 
made whenever the current state is updated (i.e., unless we 
have a movie), one must guess ahead in time which rollbacks 
will be needed later. 

When applied to historical relations, manual and periodic 
snapshots produce transaction time incomplete temporal rela- 
tions. Here, historical queries are fully supported, but rollback 
to only some of the transaction times is possible. 

F .  Summary 

We have demonstrated how the taxonomy of specialized 
temporal relations may be used for characterizing previously 
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proposed time-oriented data models. We showed how many 
of the previously proposed data models that incorporate only 
one time dimension may be viewed as specialized temporal 
relations over both valid and transaction time. Interestingly, no 
one, to our knowledge, has studied the predictive, determined, 
early, or delayed variants, even though situations exist where 
such specialized temporal relations are useful. 

v. GENERALIZED TEMPORAL RELATIONS 

To this point, we have considered individual temporal 
relations in isolation. We have focused on temporal special- 
ization, considering the restrictions that may be placed on 
the valid and transaction timestamps of a temporal relation, 
thereby coupling the two timestamps in some fashion. Now we 
change perspective and consider temporal relations as part of 
larger application systems where items move between multiple 
temporal relations. We investigate temporal generalization, 
which involves decoupling timestamps. In the next section, 
we describe two example applications that use specialized and 
generalized temporal relations. 

The concepts of specialization and generalization have been 
used previously within data modeling. A subclass may be 
created from a class by means of specialization, i.e., by 
making the defining properties (the intension) of the class 
more restrictive, and thus also restricting the set of examples 
(the extension) of the class. As the dual, a superclass may 
be created from a class by means of generalization, i.e., by 
making the intension of the class less restrictive, and thus 
expanding the extension of the class [15], [23], [52]. 

Temporal specialization and generalization are also duals. 
As we have seen, specialization contracts the space of pos- 
sible interrelations of timestamps. Temporal generalization 
appears in at least three guises, each of which expands the 
space of possible interrelations of timestamps. The first is 
removing restrictions. For example, an early strongly pre- 
dictively bounded relation may be generalized to a strongly 
predictively bounded relation, which may be generalized to 
a predictively bounded relation, which may be generalized to 
a general temporal relation. Specialization involves moving 
down the lattices given in Section 111, thereby contracting the 
2-D space of possible interrelations; generalization involves 
moving up these lattices, expanding the space of possible 
interrelations. 

A second way to define a generalized temporal relation is 
to simply add completely new, orthogonal time dimensions. 
In systems where items flow between multiple temporal re- 
lations, items may accumulate timestamps by keeping their 
previous timestamps and gaining new timestamps as they 
are entered into new temporal relations. Consequently, an 
item in a generalized temporal relation has several kinds of 
timestamps: a valid timestamp, which records when the item 
was true in reality, a primary transaction timestamp, which 
records when the item was stored in this relation, one or 
more inherited transaction timestamps, which record when 
the time was stored in previous relations, and one or more 
TSG-generated timestamps that record when the item was 
manipulated elsewhere in the system. 

A third, more involved, means of defining generalized 
relations is to have derived relations inherit transaction time- 
stamps from their underlying relations. For example, consider 
process control in a chemical manufacturing plant. Values from 
temperature and pressure sensors may be stored in temporal 
relations. The sensed data may later be processed further to 
derive new data, such as the rate at which the reaction appears 
to be progressing [41]. This derivation typically would depend 
on past temperature and pressure trends. Stored in the derived 
temporal relation recording the reaction rate would be the 
transaction time at which the rate was recorded, along with 
one or more inherited transaction times, specifying when the 
underlying data, the temperature, and pressure readings were 
originally recorded, thereby providing an indication of the 
relevance of the calculated rate. 

Specialization may be applied to any two time dimen- 
sions. Consequently, standard 2-D temporal relations may be 
perceived as multidimensional generalized temporal relations 
in which the values of the additional time dimensions are 
specialized to be identical to those of the standard transaction 
time dimension. 

Transaction timestamps added to a relation by temporal 
generalization are generated elsewhere in the system by time- 
stamp generators. During the design of a generalized temporal 
relation, the sources of these additional timestamps must be 
identified; this is done by specifying a system topology. 

A system may have two kinds of passive components, 
temporal relations and buffers. Temporal relations, already 
described in detail, contain temporal data that may be updated 
and queried from outside the system. Buffers are intemal data 
stores that are not seen from outside the system. 

A system may contain several kinds of active components. 
Data is received by either serzsurs or processors. In a mon- 
itoring scenario, data are recorded by sensors that observe a 
portion of the real world being modeled. In a manual scenario, 
data are received by a processor, as a result of either data input 
by a user or data retrieved from an on-line source. Data may be 
timestamped. A timestamp generator (TSG) is a mechanism 
that retums timestamp values on demand. Manually supplied 
data may or may not contain a valid timestamp. If not, the 
receiving processor must append a valid timestamp, obtained 
upon request from an available TSG. A processor responsible 
for entering data into a temporal relation also uses a TSG for 
transaction timestamping. 

A sensor, sz, forms events (observations). To do so, it sends 
requests, r z k ,  to a TSG and receives timestamps, t i k .  The 
sensor then appends t , k  to the remaining part of the event 
and passes the result on, 

A processor may request a timestamp from a TSG whenever 
it performs an action. For example, a processor may request a 
timestamp when it stores data in a buffer or when it retrieves 
data from a buffer, and the timestamp may be made part of the 
data that is stored. These are TSG-generated time dimensions. 
A timestamp added by a processor when it stores an item in 
a relation is a transaction timestamp. 

Finally, in a system, components of the type mentioned 
above may be connected via data channels with no storage 
capacity. Connections may be specified between a processor 



and a relation, indicating that the processor may read .or 
write data in that relation, between a processor and a buffer, 
indicating that the processor inserts and deletes data in the 
buffer, and between a processor (or sensor) and a TSG, 
indicating that the processor (or sensor) may obtain timestamps 
from the TSG. The system topology does not specify the 
order in which data are sent along data channels, though 
specializations of relations may imply a certain data ordering. 
In Section VII, we discuss the possible ways of interconnecting 
temporal relations. 

The system topology is used in this paper only for spec- 
ifying the source of inherited timestamp attributes. We do 
not differentiate between logically centralized, distributed, 
heterogeneous, federated or multidatabases [37], [50], [61]. 
The system description used here should be applicable in 
varying degrees to all of these systems. 

We emphasize that generalization expands the space of al- 
lowable timestamp values; specialization, which can be applied 
to a single timestamp attribute (e.g., a particular timestamp 
attribute may be event regular) or to a pair of timestamp 
attributes (e.g., degeneracy specifies that both values are 
identical), contracts the space of allowable timestamp values. 
It is in this sense that generalization and specialization are 
exact duals of each other. 

VI. EXAMPLE APPLICATIONS 

We first discuss a very simple application with a gener- 
alized temporal relation containing one inherited transaction 
timestamp. We then examine a more involved application 
containing several generalized relations. 

A .  Single Generalized Relation 

The system, illustrated in Fig. 8, employs two sensors, SO 
and SI, to collect temperature data as the temperature in a 
chemical experiment varies over time. Temperature values are 
timestamped with the current time when they arrive at a sensor. 
The timestamps are obtained from the timestamp generator 
tsgo and tsgl .  The valid timestamps of the measurement 
are assumed to be identical to these sensor timestamps. At 
the sensors, the measurements are also stamped with sensor 
identifiers. The sensors have no storage capacity; the items 
are simply passed on to the processor, which places them in 
the buffer. The buffer retains items for periods of time before 
they are transaction timestamped (using timestamps obtained 
from t s g p )  and entered into the relation. The relation thus 
contains three timestamps, the valid timestamp, the (primary) 
transaction timestamp (from t sgp ) ,  and the sensor timestamp 
(from tsgi). 

The temporal relation is both specialized and generalized. 
It is specialized to a degenerate relation with respect to the 
valid and the sensor timestamps, which are identical; indeed, 
only one needs to be stored. It is generalized because two 
transaction timestamps are recorded in the relation. 

Because of the varying maximum delays of items from the 
two sensors At,, and At,,, it may be the case that an item 
with a later valid time amves before that of an item with 
an early valid time. This implies that the items amving at 

967 JENSEN AND SNODGRASS TEMPORAL SPECIALIZATION AND GENERALIZATION 

~~ ~ -~ ~ 

buffer 

temporal relation 

Fig. 8. Buffering of temporal data. 

the processor from the sensors are unordered in valid time. 
By delaying items at the buffer, we can ensure that the 
relation is ordered. Of course, that destroys the relationship 
between the sensor timestamp and the transaction timestamp, 
which is why the sensor timestamp must be included in the 
relation. The buffer allows us to characterize the relation 
as globally nondecreasing and as delayed retroactive, with a 
bound computable from the various delays in the system. 

B .  Multiple Generalized Relations 

We now present a fairly complex application system that 
illustrates many types of specialized temporal relations as 
well as multiple transaction times resulting from temporal 
generalization. The system contains a collection of temporal 
relations maintained by the transportation department of a state 
govemment. Its topology is shown in Fig. 9. An employee 
relation is maintained on the workstation of each manger 
in this department, recording schedules, budgets, and salary 
levels for the employees under that manager. For the entire 
department, a single personnel relation is maintained on the 
administrative computer under the data processing group, 
which also maintains a payroll relation. The state’s accounting 
office maintains a financial relation. The bank, responsible for 
salary payments, maintains an accounts relation. Finally, there 
are two log relations that will be discussed shortly. 

Eric was hired by LeeAnn at a salary of $2000 per month. 
Because of a long and fractious session of the legislature, 
salary levels could not be agreed upon until well into the fiscal 
year. In mid-March, the state govemment finalized the budget. 
LeeAnn decided that Eric would receive a raise of $300 per 
month, effective retroactively to March 1 and to be paid to 
Eric on the first of the subsequent month. LeeAnn’s secretary 
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entered this information into the employee relation, which then 
contained the following item. 

Employee: name salary vt tt 
Eric $2300 Mar 1 Mar26 

The valid time is manually supplied by the manager; the 
transaction time is automatically recorded by the workstation, 
which requests a time from tsgl. Because current, retroactive, 
and postactive updates are possible, this relation may be 
classified as general. 

Once a week a batch job runs on the administrative com- 
puter to upload changes made on the managers' workstations. 
The job creates an update file, which is applied to the personnel 
relation one day later. This job ran on April 1, resulting in the 
following item being entered into the personnel database on 
April 2. 

Personnel: name salary vt tt tt1 
Eric $2300 Mar 1 Apr 2 Mar 26 

The transaction timestamp, tt, records when the batch job 
executed the transaction recording this item; it is supplied 
by tsgz. The inherited transaction timestamp, t t l ,  records 
the transaction time of the information in the manager's 
workstation; it is copied from the transaction time attribute 
stored there. This is an example of a generalized temporal 
relation, with one primary transaction time and one inherited 
transaction time. The personnel relation is also specialized in 
the interaction between tt, supplied by tsg2, and ttl .  Thus, 
ttl precedes tt by at least a day (the delay in processing the 
updated file) and by at most eight days, because an update 
may reside in a manager's relation for a week before being 

-L 

Financial 

uploaded, followed by the one-day processing delay. Hence, 
the pair tt and ttl in this relation is delayed strongly retroac- 
tively bounded with a delay of one to eight days. Conceming 
ut and tt, the relation is general; it is also general concerning 

The data processing group is responsible, in part, for pro- 
ducing paychecks. It does so by creating a tape that is taken 
to the bank. The bank requires that such tapes be received at 
least two days before the paychecks are to be issued; company 
policy dictates an additional day for safety. On March 29, the 
payroll relation, which will be copied to tape, contains the 
following item. 

Payroll: name salary vt tt 

The date on which the check is to be issued, April 1, is the 
valid time. Note that Eric's March salary is actually $2300. 
However, this fact did not make it into the personnel relation 
until April 2 (tt in the personnel relation). On April 28, the 
payroll relation contains this item. 

ut and ttl.  

Eric $2000 Apr 1 Mar29 

Payroll: name salary vt tt 
Eric $2600 May 1 Apr 28 

This amount consists of the monthly salary for April, $2300, 
plus an additional $300 that was omitted from the March 
check. We shall see shortly how this compensating payment 
is handled in the financial database. 

In the payroll relation, v t  will always precede tt by exactly 
three days, so this relation may be specialized to predictively 
determined by three days. It is also temporal event regular 
with an interval of one month, because both the transaction 
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timestamps and the valid timestamps differ by multiples of 
one month. 

The payroll tape is cut using information from this relation, 
and is then carried to the bank, where it is processed sometime 
during the next two days to ensure that the amount gets 
credited on time. When it does get recorded in the database, 
the information is associated with a transaction time from tsg3. 
In this case, March’s paycheck was processed on March 30, 
and April’s on April 29, resulting in the following relation. 

accounts: name credit vt tt 
Eric $2000 Apr 1 Mar 30 
Eric $2600 May 1 Apr 29 

Because the valid time will follow the transaction time by one 
to two days, the relation may be specialized to early strongly 
predictively bounded by one to two days. 

For each update transaction, the administrative computer 
appends an item to the appropriate monthly log, depending 
on the valid time of the transaction. Company policy restricts 
transactions to no more than one month postactive, implying 
that only two logs are ever active: the current monthly log and 
the next month’s log. When the retroactive salary increase 
(initially entered into LeeAnn’s workstation on March 26) 
was processed by the administrative computer on April 2, a 
compensating transaction resulted in the following item being 
inserted into the next month’s log (May). 

May’s monthly log: name salary vt tt 
Eric $300 May 1 Apr 2 

Subsequently, when Eric’s payroll check for April was issued 
on April 28, the following item was inserted into the next 
month’s log (May). 

May’s monthly log: name salary vt tt 
Eric $2300 May 1 Apr 28 

Because retroactive changes are possible as far back as one 
month (e.g., a transaction valid on April 1 being inserted into 
April’s log on April 30), and postactive changes are possible 
as far into the future as two months (e.g., a transaction valid 
on April 30 being inserted into April’s log on March l), each 
of the monthly logs can be specialized to strongly bounded 
between minus one month and plus two months. 

The state’s accounting office uploads the log of a month 
shortly after that month ends. It then processes the items con- 
tained in the log, performing internal audits. Errors detected 
at that point may simply be corrected in the copy of the 
monthly log held in the accounting department’s computer, 
or they may necessitate compensating transactions, depending 
on the specific error. Once the monthly log is cleaned up, it is 
applied to the financial database on the fifteenth of the month, 
a process termed “closing off the month” [62]. The financial 
relation will contain the following items after both April and 
May have been closed off. 

Financial: name salary vt tt ttz 
Eric $2000 Apr 1 May 15 Mar 29 
Eric $300 May 1 Jun 15 Apr 2 
Eric $2300 May 1 Jun 15 Apr 28 

The transaction time, t t ,  when the entry is recorded in the 
financial relation is obtained from tsg4, and the inherited 
transaction time, ttz, is the transaction time of the original 
entry recorded in the monthly log, supplied by tsgz.  

Because updates to the financial relation occur only on 
the fifteenth of each month, this relation may be specialized 
to transaction time regular over one month. Also, tt  always 
follows ttz by 16 days (e.g., tt  = May 15 and ttz = April 
30) to 76 days (e.g., tt  = June 15 and ttz = April l), and 
so the interrelation between the primary and the secondary 
transaction time may be characterized as delayed strongly 
retroactively bounded with bound 16 to 76 days. As discussed 
above in the context of the monthly logs, vt must be no more 
than one month prior to ttz. Thus, the interrelation between vt 
and ttz is restricted, as before, to strongly bounded between 
minus one month and plus two months. These two relationships 
imply that the interrelation between wt and tt  may be described 
as delayed strongly retroactively bounded with bounded I 6  to 
46 days, with the former bound being exemplified by vt = 
April 30 and tt  = May 15, and with the latter bound being 
exemplified by vt = May 1 and tt  = June 15. Finally, because 
each month is closed off during the next month, the relation 
is globally nondecreasing and transaction time event regular 
with an interval of one month. 

The implications of the process of closing off on the 
temporal semantics of accounting databases were first ex- 
amined by Thompson [62]. In his terminology, the tt  of 
the payroll and financial relations is physical time (i.e., it is 
tied to a TSG and concerns the storage of data), vt of the 
payroll relation is logical time (i.e., it links the event with 
the value of a TSG present when the event occurred), ut 
of the financial relation is accounting time (i.e., it has been 
validated by the closeout process), and ttz of the financial 
relation and (equivalently) tt  of the monthly log is engineering 
time (i.e., it is always up-to-date, but not necessarily consistent, 
because it has not yet been validated). This example illustrates 
how the application of specialization and generalization can 
accommodate Thompson’s conceptual taxonomy of discrete 
clocks. 

VII. QUERYING GENERALIZED TEMFWRAL RELATIONS 
In previous sections, we explored how items may flow 

from one temporal relation to another in a system contain- 
ing multiple temporal relations. In particular, we showed 
how it is possible for items to preserve primary transaction 
time attributes from predecessor relations. Appending a new 
transaction time attribute every time it is entered into a 
relation results in generalized temporal relations with multiple 
transaction time attributes. Preserving predecessor transaction 
timestamp attributes allows one to query the predecessor 
relation from the current relation. 

The successor relation may be preferable to query for 
several reasons. Because of security controls, the predecessor 
relation may not be available, because it exists on a different 
processor for which direct access is not possible, or because it 
has since been deleted. Alternatively, the predecessor relation 
may be available, but the successor relation may have indexes 
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defined on it or may be clustered in such a manner that access 
to it for certain queries is more efficient. - 

For example, the (centralized) personnel relation of the 
application system discussed in the previous section inherits 
the transaction and valid time attributes of the employee 
relations local to the managers’ workstations. Therefore, it is 
possible to query the employee relations from the personnel 
relation. Members of the data processing group, having access 
to only the administrative computer, can tell, say, when 
LeeAnn’s secretary made a particular salary adjustment for 
an employee on the manager workstation. 

Even though the primary transaction time attribute (and, nat- 
urally, the valid time attribute) from the predecessor temporal 
relation is present in the successor temporal relation, not all of 
the items present at a particular time in the predecessor relation 
may be present in the successor relation at the same time, 
for two reasons. First, there is likely to exist a transmission 
delay between the two relations. The delay from when an 
item is stored in the predecessor relation to when the item 
is stored in the successor relation may be significant. In the 
previous section, we saw that the delay between employee 
relations and the personnel relation may be up to eight days. 
Second, it may be that only a portion of the items entered 
into the predecessor relation are transmitted to the successor 
relation. For example, if LeeAnn has hired employees directly 
(as opposed to employees hired departmentally, such as Eric), 
the items recording salaries for those employees will never 
appear in the personnel relation. 

In consequence, despite the fact that we have the capabil- 
ity of querying the predecessor relation remotely from the 
successor relation, the set of queries that can be answered 
correctly at the successor relation is a subset of the queries 
that can be answered correctly when querying the predecessor 
relation directly. For example, querying the personnel relation 
on March 28 regarding the current salary of Eric present in 
LeeAnn’s employee relation will give the (incorrect) answer 
$2000. The same query applied directly to LeeAnn’s employee 
relation will give the correct answer of $2300. However, the 
query of what was Eric’s salary two weeks prior to March 28 
will yield the correct result from either relation. 

In addition to missing items, it may be that not all the 
time-varying attributes of an item present in an predecessor 
relation are included when items are transmitted to a successor 
relation. For example, the employee relation could contain a 
title attribute in addition to the salary attribute. For simplicity, 
we do not consider the possibility of partial transmittal further. 
We also do not consider here derived relations containing 
inherited transaction timestamps. 

Below we discuss an approach that avoids the problem 
of the same query having differing (and thus inconsistent) 
answers depending on where it is asked. The fundamentally 
same approach was previously used to solve the similar 
problem of identical queries having different results depending 
on when they were asked [26]. This problem surfaces with 
temporal and rollback relations when flexible physical deletion 
is allowed. 

In essence, the approach is to simply disallow all queries 
from a successor relation on a predecessor relation if the result 

of that query cannot be intensionally decided to be identical 
to the result of the corresponding query when asked locally at 
the predecessor relation. 

For each ordered pair of a predecessor relation R, and a 
successor relation R,, where R, has inherited the primary 
transaction time attribute from R,, we define a transmission 
filter, I( R,, R,). This filter intensionally expresses which 
of the items currently present in R, is currently present in 
R,. For example, if only departmental employees appear in 
the employee relation, the filter between LeeAnn’s employee 
relation and the personnel relation, stating that queries about 
the most recent eight days are disallowed, may be expressed 
as o t t ~ n o w - s d a y s .  The transmission filters are defined by the 
designer of the overall application system. 

When a query Q on R, is asked at R,, the following takes 
place. 

1) The query Q is modified with the transmission filter ex- 
pression, ‘T(R,, R,), and the modified query expression 
MT(R,,R,) (Q) is obtained. 

2) Q and M~-(R,,R,)(Q) are tested for equivalence. 

a) 
b) 

If the test succeeds, then Q is processed. 
If the test fails, then the user is notified that the 
original query is disallowed and is presented with 
MT(R,,R,)(Q). The user may submit this query 
for processing, modify the query and submit the 
result, or simply submit a completely new query. 
In the latter two cases, the new query will go 
through this cycle again. 

For example, assume that the query rsalary(Ovt=hIarG 

Att=Mar28Aname=Eric(employee)) is issued at the personnel 
relation on April 2. The fact that this query cannot be answered 
correctly from the personnel relation is discovered when the 
modified query, with the filter restriction added, is seen to 
be internally inconsistent, and thus is not equivalent to the 
original query. (With now = April 2, the expression in the 
transmission filter, now - 8 days evaluates to March 25, and 
because March 25 < March 28, the query is inconsistent.) 

In considering each way of interconnecting temporal re- 
lations, we distinguish between three cases as outlined in 
Fig. 10, where processors have been omitted for simplicity. 
Only the interconnections between temporal relations where a 
successor inherits the primary transaction time attribute of the 
predecessor relation are of interest. In an application system, 
the three connection types may be applied together repeatedly, 
e.g., to specify a chain of relations, each inheriting data from 
the previous one. 

The first case is the linear transmission of items from one 
relation (R,) to another relation (R,). Here all or just some 
of the items form R, may be transmitted to R,. 

The second case involves the distribution of items. Here 
the items from one temporal relation may be distributed 
among an arbitrary number of relations. Note that the same 
item may be distributed to several relations and that the 
transmission filters, each between the predecessor and an 
individual successor relation, are thus independent. This kind 
of interconnection is absent from the application system in 
Section VI-B. If employees from several departments were 
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Interconnections of temporal relations. (a) Linear transmission of 

managed by LeeAnn, items from her employee relation could 
be distributed among several personnel relations. 

The third case is the collection of items where various 
items from multiple predecessor relations are transmitted to a 
single successor relation. With only the two previous cases, 
the predecessor relations that may be queried from some 
relations are all connected sequentially. When the third case 
is included, the relations that may be queried from some 
relation can be connected arbitrarily. In order to make the 
collection of items possible, we restrict all the immediate 
predecessor relations and successor relation to have the same 
schemes, with the exception that the successor relation has 
two additional attributes. First, the successor relation naturally 
has its own primary transaction time attribute. Second, it 
has an attribute associated with the transaction time attribute 
inherited from the set of predecessor relations that records 
from which predecessor items are received. The information 
of this second attribute, which partitions the successor relation 
with respect to the predecessor relations, is necessary in 
order to be able to query the predecessor relations from 
the successor relation. (This attribute may in fact be one of 
the attributes from the predecessor relations.) This kind of 
interconnection exists between the employee relations and the 
personnel relation. Here each manager records information 
about her own employees. Then the information recorded 
locally by each manager is collected in the central personnel 
relation. 

Note that sources may take the role of originating temporal 
relations in the discussion above. Also note that buffers are ir- 
relevant for the discussion above-buffers cannot be queried, 
and they only add additional delays and make the transmission 
filters between temporal relations more restrictive. Finally, 
note that in the above description, situations where a relation 
receives items that the relation itself transmitted are implicitly 
possible. For simplicity, we do not discuss such cycle. 

In summary, three connection types are employed in spec- 
ifying the system topology. For each inherited timestamp 

attribute, a transmission filter is specified that allows the 
database system to ensure that queries always yield correct 
results. 

VIII. IMPLICATIONS FOR QUERY 0F"'IMIzATION AND 

EXECUTION 
In this section, we consider the performance implications for 

processing queries over specialized temporal relations. Specif- 
ically, we indicate how query processing algorithms and in- 
dexing techniques designed for I-D time-varying data may be 
naturally extended to apply to specialized temporal (i.e., 2-D, 
valid and transaction time) relations as well. This represents 
a simple but significant contribution to the largely unexplored 
topic of efficient support of temporal data. 

We proceed in two steps. First, we describe the general idea 
of applying 1-D approaches to 2-D data; second, we briefly 
review related research and show how the general idea applies. 
We do not attempt to give a detailed analysis of the application 
of 1 -D approaches to specialized temporal relations; that 
would require us to select specific stored representations, 
indexes, and processing strategies for temporal data, which 
is beyond the scope of this paper. Instead, we discuss query 
optimization only to show that the taxonomy may be used to 
take known techniques that were heretofore limited to either 
rollback or historical databases (i.e., one time dimension) and 
apply them to specialized relations containing multiple time 
dimensions. New research efforts aimed directly toward the 
efficient support of temporal relations may also be designed to 
exploit the semantics of specialized temporal relations, with 
resulting performance gains. 

A .  Exploiting Specializations 

The general idea can be stated as follows. In order to apply 
existing techniques previously used to improve the perfor- 
mance of queries on 1-D data, we use the specific interrelation 
between valid and transaction timestamps, guaranteed by the 
type of a specialized temporal relation, to simply disregard one 
time dimension and use only the other as far as physical or- 
ganization is concemed. Note that both the existing techniques 
for transaction time alone and the existing techniques for valid 
time alone are applicable. Because items resulting from update 
activity arrive, by definition, in transaction timestamp order at 
temporal relations, we find it natural to use the transaction 
time dimension and ignore the valid time dimension. 

This approach applies, with some variations, to all spe- 
cialized temporal relations. The application of the approach 
to specialized temporal relations toward the bottom of a 
specialization/generalization structure (see Figs. 2 to 6), being 
closer to degenerate relations that never require more than 
one timestamp, will be more successful than the application 
to relations higher in the specialization/generalization struc- 
ture. Rather than consider each type of specialized temporal 
relation in tum, we confine the presentation to consider only 
strongly retroactively bounded relations as an example. Also, 
we assume that items of a relation are physically clustered 
on transaction time on a per-relation basis (e.g., [29J) or 
on a per-object surrogate basis (e.g., [20], [U]). These are 
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straightforward representations, particularly if write-once stor- 
age media are used. Assuming physical clustering and strongly 
retroactively bounded temporal data, the following important 
property holds: All items with valid timestamps equal to some 
value, t,, may be found within a limited number of items after 
the item with transaction time value equal to t,, if it exists, and 
otherwise after the item with the largest transaction timestamp 
less than t,. The limit on the number of items depends on 
the particular retroactive bound and the intensity of update 
activity for the relation. 

The property of locality may have significant performance 
implications for some historical queries. From potentially hav- 
ing to search an entire ever-growing temporal relation, search 
may be confined to a restricted region. Indeed, the storage 
structure chosen for a temporal relation may be strongly 
dependent on the specialized type of that relation. Particularly, 
if bounds are satisfactorily tight, performance enhancing strate- 
gies used for 1-D data (valid or transaction time) may prove 
applicable. Order preserving physical organizations for 1 -D 
data seem especially promising, because order preservation 
in the transaction time dimension carries over the valid time 
dimension and results in items that are nearly clustered with 
respect to valid time. 

B.  Application to Previous Proposals 

The issue of efficient temporal query processing is largely 
unexplored. Although much research is still needed, the effi- 
cient support of queries on data with a single time dimension of 
various kinds has been addressed to some extent. As indicated 
above, it appears that this research may be extended naturally 
to include the efficient support of specialized temporal data. 
Below we briefly review some of this research. 

First, we consider two approaches to efficiently support 
various joints on 1-D temporal data. h u n g  and Muntz have 
proposed a stream processing approach to temporal (semi-) 
joins [35]. In this approach, the input to, and the output from, 
stream processors consists of a set of streams of items. A 
processor has a local state, and it is allowed to see only a 
single item from each stream at a time. For example, a join 
processor has two input streams and one output stream. When 
constructing a stream processor for computing a function such 
as a join, it is often necessary to make trade-offs between 
possible sort orderings of input and output streams, the size 
and contents of the local processor state, and the number of 
passes needed over the input streams. With this approach, 
the effects of different sort orderings on the efficiency and 
the size of the local state were considered for one temporal 
join (and as special cases, two semijoins). A stream join 
processor that assumes a time-ordered sequence of items may 
be converted into a processor that will accept a transaction 
time ordered stream (nearly ordered in valid time), and yet 
efficiently computes a valid time temporal join. This may be 
done by simply adding two identical prestream processors 
that each use a buffer to convert nearly ordered data into 
totally ordered data (an integration into a single processor may 
improve performance). The buffer sizes correspond to the sizes 
of the regions mentioned in the general discussion above. 

A more traditional approach to the processing of 1-D 
temporal joins is chosen in most other work in temporal 
query optimization [ 191-[21]. Most notably, a temporal event- 
join consisting of three time-oriented joins is considered [20]. 
In this work, the proper ordering of argument relations has 
again been shown to significantly impact the efficiency with 
which joins can be performed. As above, this research may 
be applied to specialized temporal relations at the expense of 
some added complexity to the join algorithms. Thus, additional 
control structure and bookkeeping is necessary to process 
nearly ordered data, as opposed to the currently totally ordered 
data. In particular, results obtained for append-only databases 
are highly relevant for specialized temporal relations. 

Next we briefly survey recent contributions to the problem 
of indexing various kinds of 1-D temporal data. The reader 
should consult the references below for pointers to other work. 

A number of research contributions aimed at supporting 
time-varying data attempt to ensure that storing previously 
currenthalid data as well as current data should not adversely 
affect to a significant degree the performance of queries 
accessing only current data. The time-split B-tree [38], [44] is 
a recent contribution based on this philosophy. In addition to 
the key splits of the B-tree, this index structure allows for so- 
called time splits. The basic idea of the time-split is to migrate 
data to a separate and ever-growing historical database if the 
data resides in the current database (where it was initially 
inserted), and if it also has timestamps that are smaller than 
the split time. We believe that the time-split mechanism may 
be modified to make this indexing technique suitable for some 
types of specialized temporal data. 

Also based on the above-mentioned philosophy, Kolovson 
and Stonebraker generalize R-trees to span both magnetic and 
optical disk media, thus providing new intermediates between 
R-trees residing on only a single medium [33]. This is relevant 
when the bulk of temporal data do not fit on magnetic disk 
and must be migrated to optical disk [43]. They also introduce 
tactics aimed at improving observed deficiencies of existing 
indexing techniques for historical data (e.g., R-trees) [34]. 
This research may likely be extended to deal successfully with 
specialized temporal data. 

The Time Index is an indexing technique based on the B- 
tree [14], [16]. It uses endpoints of intervals of validity for 
the indexing of items. How to extend this technique to cover 
specialized temporal data is an interesting topic. 

Transaction time data may also be stored in backlogs 
clustered on the time dimension [28], [29]. On top of the 
backlogs, indexed and selectively cached views, together with 
differential (incremental and decremental) computation tech- 
niques, may be employed, together with standard query pro- 
cessing technique. The specialized temporal relations with 
close valid and transaction times may be easily integrated 
into, and efficiently supported by, this query processing and 
optimization framework. 

In summary, it appears that many implementation tech- 
niques originally proposed for rollback or historical database 
and supporting only one kind of time may be adapted to also 
apply to specialized form of temporal relations supporting both 
kinds of time. 

._ - 
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Ix. CONCLUSION AND FUTURE RESEARCH 

A temporal relation has two database system-interpreted 
time attributes, transaction time and valid time. A transaction 
timestamp is a simple value indicating when a fact is stored in 
the temporal relation. A valid timestamp records the validity 
of a fact, and it may be a simple value (event relation) 
or an ordered pair of simple values (interval relation). In 
general, these timestamps are independent, meaning that facts 
may be associated with a point or a pair of points in an 
unrestricted 2-D space. In many situations, however, the 
time points of facts are restricted to limited regions of this 
space, resulting in specialized temporal relations. Examples 
include process monitoring, satellite surveillance of crops 
or weather, accounting applications, and real-time databases. 
The restricted interrelations of timestamps constitute important 
semantics of temporal relation schemas. 

In this paper, we considered the specialized semantics of the 
time attributes in generalized temporal relations. These include 
the standard temporal relation dimensions of valid time and 
(primary) transaction time, inherited transaction timestamps, 
and TSG-generated timestamps. 

We presented an extensive taxonomy of temporal spe- 
cializations, some restricting the stamps of individual facts, 
and others restricting the stamps of an interfact basis. The 
taxonomy provides a better understanding of the nature of 
individual temporal relations and of how various temporal 
data models compare. Additionally, a database system may be 
extended to exploit such time-related semantics of temporal 
relations if they are recorded in the schema. In particular, 
we showed that storage and indexing structures for 1-D 
temporal data may be naturally extended to efficiently support 
specialized temporal relations. The additional semantics may 
be used also for query optimization purposes, resulting in more 
efficient query processing. 

We extended to 2-D space associated with facts to having 
n dimensions, resulting in generalized temporal relations. 
This natural extension resulted from considering temporal 
relations as parts of larger application systems, where facts 
were allowed to flow from relation to relation and thus 
accumulate timestamps. We presented a set of components that 
may be used to specify the topology of application systems, 
and we discussed the ability to query a predecessor relation 
via a successor relation. By means of examples, we illustrated 
how application systems are described and how specialization 
may be applied to any of the time dimensions in generalized 
temporal relations. 

Further work is indicated in two areas. As we have shown 
(Section VIII), specialized temporal relations present an op- 
portunity to optimize temporal queries; more work is needed 
to exploit specializations stated by the database designer. Our 
contention is that most previous work in this area is relevant; 
still, the details need to be worked out. 

An overall approach to designing temporal databases is still 
needed. This paper has considered only half of the problem of 
designing temporal relations: determining the characteristics 
of the timestamp attributes that concem entire items. Just 
as important are the characteristics of the individual time- 

varying attributes. A fully articulated design methodology for 
temporal relations must address both timestamp attributes and 
time-varying attributes. 
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