
954 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 6. DECEMBER 1994

Temporal Specialization and Generalization
Christian S. Jensen, Member, IEEE, and Richard Snodgrass, Senior Member, IEEE

Abstract-A standard relation has two dimensions: attributes
and tuples. A temporal relation contains two additional orthogonal
time dimensions, namely, valid time and transaction time. Valid
time records when facts are true in the modeled reality, and
transaction time records when facts are stored in the temporal
relation.

Although, in general, there are no restrictions between the valid
time and transaction time associated with each fact, in many
practical applications, the valid and transaction times exhibit
more or less restricted interrelationships that define several types
of specialized temporal relations. The paper examines five different
areas where a variety of types of specialized temporal relations
are present.

In application systems with multiple, interconnected temporal
relations, multiple time dimensions may be associated with facts
as they flow from one temporal relation to another. For example,
a fact may have an associated transaction time indicating when it
was stored in a previous temporal relation. The paper investigates
several aspects of the resulting generalized temporal relations,
including the ability to query a predecessor relation from a
successor relation.

The presented framework for generalization and specialization
allows researchers as well as database and system designers
to precisely characterize, compare, and thus better understand
temporal relations and the application systems in which they are
embedded. The framework’s comprehensiveness and its use in
understanding temporal relations are demonstrated by placing
previously proposed temporal data models within the framework.
The practical relevance of the defined specializations and gener-
alizations is illustrated by sample realistic applications in which
they occur. The additional semantics of specialized relations
are especially useful for improving the performance of query
processing.

Index Terms- Query processing, specialized temporal rela-
tions, generalized temporal relations, taxonomy, time attributes,
temporal database, temporal semantics, transaction time, valid
time

I. INTRODUCTION

HIS paper explores a variety of specialized semantics T of ordinary and generalized n-dimensional temporal re-
lations. The time of validity of a fact in a temporal relation
and the time when the fact was recorded in the relation are
ostensibly independent. Yet, in many applications of tem-
poral relations, the two times interact in restricted ways.

Manuscript received November 25, 1991; revised June 16, 1992. This work
was conducted while the first author visited the University of Arizona, and it
was supported in part by the National Science Foundation under Grant ISI-
8902707, and in part by the Danish Natural Science Research Council (Statens
Naturvidenskabelige ForskningsrAd) under Grant 1 1-8696- 1 SE.

C. S. Jensen is with the Department of Mathematics and Computer Science,
Aalborg University, Fredrik Bajers Vej 7E, DK-9220 Aalborg 0, Denmark;
e-mail: csj@iesd.auc.dk.

R. Snodgrass is with the Department of Computer Science, University of
Arizona, Tucson, AZ 85721 USA; e-mail: rts@cs.arizona.edu.

IEEE Log Number 9213340.

For example, in the monitoring of temperature during a
chemical experiment, temperature measurements are recorded
in the temporal relation after they are valid, as a result
of the transmission delays. The resulting relation is termed
retroactive. Alternatively, salary payments recorded in the
temporal relation of a bank are recorded before the time the
funds become accessible to employees, resulting in a predictive
relation.

We explore a variety of temporal relations with special-
ized relationships between transaction and valid time [30].
Such specialized temporal relations occur in many practical
applications, and the framework presented here is a means of
capturing more of the semantics of temporal relations, with
two primary benefits. Used by designers and researchers, the
framework conveys a more detailed understanding of temporal
relations. The additional semantics, when captured by an
appropriately extended database system, may also be used for
selecting appropriate storage structures, indexing techniques,
and query processing strategies.

When facts flow between temporal relations, several time
dimensions may be associated with individual facts, resulting
in generalized temporal relations. For example, consider the
fact that an employee is given a salary raise by a manager.
This fact has an associated time when the raise is effective,
as well as the time when it is entered into the relation on
the manager’s workstation. Later this fact is copied into the
centralized departmental personnel relation, and is associated
with an additional time value, namely, the time when it
was stored there. Thus, the personnel relation has three time
dimensions. Sometimes it is possible to query one relation
from another relation. In the example, it is possible to query the
time-varying relation on the manager workstation indirectly
via the personnel relation on the centralized machine.

The paper extends a previously presented taxonomy on time
in databases [54], [55]. The previous taxonomy defined three
kinds of time that could be associated with facts: user-defined
time (with no database system-interpreted semantics), valid
time (when a fact is true in reality), and transaction time (when
a fact is stored in the database).

Depending on which kinds of time are associated with its
facts, a relation may be of one of four types. In a snapshot
relation, a fact has neither a valid time nor a transaction
time; conventional databases support snapshot relations. In
a rollback relation, a fact has a transaction time only. Such
a relation records the current state in addition to each state
that was current at some past point in time. Associated with
each state is a transaction time when it became current and a
transaction time when it ceased to be current. Consequently,
a rollback relation is ever-growing. While a rollback relation

104 l-l347/94$04.OO 0 1994 IEEE

mailto:rts@cs.arizona.edu

JENSEN AND SNODGRASS: TEMPORAL SPECIALIZATION AND GENERALIZATION 955

reflects the history of update activities, a historical relation
models the part of reality modeled by the database. A fact in
such a relation has valid time only. Finally, a fact in a temporal
relation has both a valid and a transaction time. A temporal
relation inherits the properties of both rollback and historical
relations, and it records both the previous states of the relation
and the history of reality.

The four relation types support three kinds of queries.
All four kinds of relations support current queries, queries
on the current state of the database; indeed, conventional
database systems support only this kind of query. Historical
and temporal relations support historical.queries, which extract
facts about the history of objects from the modeled reality.
Rollback and temporal relations support rollback queries,
which extract facts as stored in the database at some point
in the past. All four types of relations support queries that
involve user-defined time; these queries require no special
support from the database system.

The original taxonomy falls short in its characterization of
temporal relations in three ways. First, the taxonomy fails to
give an adequate understanding of some time-extended rela-
tions. Many proposals for adding time to databases advocate
storing a single timestamp per fact (e.g., [28], [49], [58]) ,
yet it appears that both rollback and historical queries are
possible in these schemes. However, the taxonomy explicitly
forbids both kinds of queries on a relation with only one
timestamp per tuple. Second, because the taxonomy focuses
on the orthogonality of the three kinds of time, it ignores
restricted interrelationships between the valid and transaction
times of facts in temporal relations. Third, the taxonomy
assumes that each fact has at most one transaction time
and one valid timestamp (interval or event).’ However, in
application systems with multiple, interconnected temporal
relations, multiple time dimensions may be associated with
facts as they flow from one temporal relation to another.

In order to address the first and second of the shortcomings,
we explore the space of restricted interrelations-in between
the extremes of identity and no interrelation at all-that are
possible between the valid and transaction times of facts.
To address the third shortcoming, we provide the means
for specifying the application system contexts of temporal
relations.

The paper is structured as follows. In Section 11, we present
a general definition and description of a temporal relation. In
the following section, we examine the kinds of restrictions
that one might impose on temporal relations, considering
in turn restrictions on isolated events, collections of events,
isolated intervals, and collections of intervals. We are not
concerned here with the semantics of time-varying attributes,
i.e., how to use timestamp values and stored attribute values to
derive the value of a time-varying attribute. For example, we
do not address the issue of how to derive the temperature
of a chemical reaction at an arbitrary point in time from
timestamped and stored temperature measurements. We are
interested only in the semantics of the timestamps themselves.

’From now on, we use the shorter, but not quite precise, terms “valid
timestamp” and “transaction timestamp.”

The framework developed here allows researchers as well
as database and system designers to precisely characterize,
compare, and thus better understand specialized temporal
relations. Many previously proposed time-oriented data models
do not support general temporal relations, and some support
only a single time dimension. In Section IV, we use the
framework to classify existing data models, and we show
that some 1-D models do in fact support specialized temporal
relations. To show how the framework may be used to char-
acterize and compare types of temporal relations, we place the
temporal relations of all time-oriented data models known to
the authors within the framework. This also indicates that we
have succeeded in making the framework comprehensive, an
important property.

In Section V, we introduce generalized temporal relations.
In Section VI, we present two sample application systems
with embedded, generalized temporal relations. Queries on
generalized relations may provide the same answers as queries
on the underlying relations. In Section VII, we examine means
for the database system to ensure that such queries always
yield correct results.

Database systems may exploit the additional semantics of
temporal relations, captured using the framework, to enhance
performance. The additional semantics may be used to improve
display, to aid in integrity checking, and to improve the perfor-
mance of query processing on the specialized relations. Section
VI11 contains a brief analysis of how existing approaches to
efficiently store and retrieve 1-D time-varying data may be
modified to support specialized temporal relations, thereby
contributing to the lightly researched area of support for 2-D
temporal data. We show how much of the research that
heretofore has applied only to rollback or historical databases
is also relevant to restricted forms of temporal databases. New
research efforts targeted at directly supporting 2-D temporal
data may also exploit the additional semantics discussed in
this paper. The final section summarizes our work and points
to future research.

11. A CONCEPTUAL MODEL OF A TEMPORAL RELATION

We present a conceptual model of a temporal relation as
a prelude to the extensions discussed in the remainder of the
paper. Note that the adjective “temporal” (snapshot, rollback,
and historical as well) has most often been attributed to
databases. We take a more general approach and use it only for
relations, because a single database may consist of relations
of several types.

A temporal relation has two orthogonal time dimensions:
valid time and transaction time. Valid time is used for capturing
the time-varying nature of the part of reality being modeled
by the relation. Transaction time models the update activity of
the relation. Thus, a temporal relation may be envisioned as a
sequence of historical states indexed by transaction time.

A temporal relation consists of a set of temporal items, each
of which records one or more facts about an object (entity or
relationship) from the part of reality being modeled by the
temporal relation. Temporal items have the following attribute
values:

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 6, DECEMBER 1994 956

0

0 .
. .
0

item surrogate,
object surrogate,
transaction timestamp,
valid timestamp (interval or event),
time-invariant attribute values,
time-varying attribute values, and
user-defined times.

An item surrogate is a system-generated unique identifier of an
item that can be referenced and compared for equality, but not
displayed to the user [IO], [22]. We discuss item surrogates
in more detail shortly.

An object surrogate is a unique identifier of the object
being modeled by an item. It is used for identifying all the
database representations of individual real-world objects. At
any point in time, each real-world object may have, in a single
relation, a set of associated items, all with the same object
surrogate (cf. a “lifeline” [46] or a “time sequence” [51]).
Thus, a relation (cf. a “time sequence collection” [51]) can
be partitioned into a collection of sets so that items of distinct
sets have distinct object surrogates, and items of any single set
have the same object surrogate. This is termed a per surrogate
partitioning.

Transaction times are generated by the database system itself
using monotonically increasing timestamp generators (TSG’s);
thus, each historical state has an associated unique transaction
time. The granularity of transaction timestamps is arbitrary,
as long as uniqueness is ensured. Transaction time models
the update activity of the temporal relation, and, as such, its
semantics are entirely independent of the application and the
enterprise being modeled. The transaction time of’an item is
the time when the facts recorded by the item were stored in
the relation. No stored transaction time exceeds the current
time. The historical state resulting from a transaction remains
unchanged from the time of that transaction to the time of the
next transaction. Therefore, the semantics of transaction time
has been characterized as stepwise constant.

We associate two transaction times, tt; and it,’, with each
item e in a temporal relation. The first, tt;, is the time when
the item e is stored in the relation. The second, ti:, is the
time when the item e is logically removed from the relation.
The existence interval for e , [t t ; , tt:), is thus the time between
the transaction time of the historical state in which the item
first appeared and the transaction time of the historical state
succeeding the one in which the item last appeared.

The item surrogate identifies the item for the purpose
of defining the existence interval (in the database) for the
item. If a particular event or interval is (logically) deleted,
and then immediately reinserted, the two resulting items will
have different item surrogates, allowing the deletion (tt,’)
and insertion (tt; points to be unambiguously defined. If a
modification is made by a transaction executed on the database,
the item in the current historical state is (logically) deleted, and
a new item, recording the modified information, is stored in
the new historical state, indexed by the transaction time of the
transaction making the change.

The database system uses the transaction times for items for
implementing the rollback operator [8], [46]. In general, any
domain of items with an identity relation and a total ordering

is suitable for transaction time. Example domains include the
natural numbers and regular data and time values [13].

Valid times are usually supplied by the user, but they may
be system-generated. The valid timestamp of an item records
when the facts represented by the time-varying and user-
defined time attribute values are true in reality. Valid times are
always drawn from the domain of times and data. The items
of a relation may represent events, in which case the valid
timestamp of an item is a single valid time value. Altematively,
the facts represented by the items of a relation may be true for a
duration of time, in which case the valid timestamp of an item
is an interval consisting of two valid time values. The valid
timestamps are used by the database system for implementing
the time-slice operator [81, [311.

An item may contain a number of time-invariant attribute
values, i.e., values that never change. An important example is
the time-invariant key [40], which, although it resembles the
object surrogate, is still necessary. Social Security, account,
and membership numbers are important time-invariant keys
in many applications. Non-key time-invariant attribute values
also exist, e.g., race.

An item may record several facts about a real-world object,
using several time-varying attribute values. For example, an
item may record both the title and the salary of an employee.
Each relation may have an individual valid timestamp granu-
larity, or the database system may impose a fixed granularity
on all relations managed by the database system. Although
different granularities may be ascribed to individual time-
varying attributes within an item, it may still be necessary
to fix the (overall) item granularity.

Just as an item may have several time-varying attribute
values, it may have several user-defined times. User-defined
times are drawn from a domain of dates and times with an
identity relation and a total ordering, i.e., has an associated
less-than relation. User-defined times may be manually sup-
plied or computed by an application program. The system
gives no special semantics to user-defined times, and user-
defined times are most appropriately thought of as specialized
kinds of time-varying attribute values [56], [57].

In this paper, we focus on the timestamp attributes of
temporal relations alone. The treatment of the time-varying
attributes is a separate issue that is beyond the scope of the
presentation.

Note that in this conceptual model, we do not assume any
particular type system on historical states or attributes. In
particular, while an item is associated with a valid timestamp,
the model makes no mention of whether tuple timestamping
or attribute-value timestamping is employed. Neither do we
assume a particular data model; items could be tuples in a
relational database [9], records in a network database [I l l ,
or events in a time sequence collection [51]. Finally, the
conceptual model of a sequence of historical states does
not imply (nor disallow) a particular physical representation.
For example, a temporal relation may be represented as a
collection of tuples with an event or interval valid timestamp
and an interval transaction timestamp [53], or with one or
two valid timestamps and three transaction timestamps [8],
as tuples containing attributes timestamped with one or more

957 JENSEN AND SNODGRASS: TEMPORAL SPECIALIZATION AND GENERALIZATION

finite unions of intervals (termed temporal elements [17]), and
as a backlog relation of insertion, modification, and deletion
operations (tuples) with single transaction timestamps [29] or
with time warp attributes [62].

111. SPECIALIZED TEMPORAL RELATIONS

In this section, we characterize temporal relations according
to the interrelations of their timestamps. In Sections 111-A and
111-B, we consider singly stamped times (event stamping), and
in Sections 111-C and 111-D, we consider doubly stamped items
(interval stamping). In Section 111-A and 111-C, we characterize
relations considering the timestamps of individual times in iso-
lation, and in Section 111-B and 111-D, we characterize relations
considering the interrelations of timestamps of distinct items.
In Section 111-E, we present a final, orthogonal specialization
of temporal relations. Then, in Section 111-F, we relate the
specializations of event and interval temporal relations. In
Section 111-G, we apply properties on a per-relation basis
to portions of a relation. We provide examples for most of
the specialized temporal relations defined here. The section
concludes with a summary.

All the definitions of relation types in this section are
intentional definitions; i.e., in order for a relation schema to
have a particular type, all its possible (nonempty) extensions
must satisfy the definition of the type. The restrictions usually
apply only to the historical state in which the item was
inserted or the historical state in which the item was logically
deleted (i.e., the one following the historical state in which
the item last appears). Throughout we assume that the valid
and transaction timestamps are drawn from the same domain,
which must be totally ordered. We do not consider in this
section transaction time domains such as version numbers that
cannot be compared with valid time.

The specializations presented in this paper apply to temporal
relations, i.e., sets of items, and they are all defined in terms of
an ordered pair of timestamp attributes. Specializations apply
to any ordered pair of timestamp attributes. The natural choice
is the pair consisting of the primary transaction time attribute
and the valid time attribute, both of which are present in all
temporal relations.

Just as the specializations may be applied to an entire
relation, i.e., on a per-relation basis, they may be applied in
tum to each partition of a relation, i.e., on a per-partition
basis. This is true because the partitions are sets of items.
Specifically, a relation satisfies a specialization on a per-
partition basis if every partition of the particular partitioning
in turn satisfies the specialization on a per-relation basis.
Although many partitioning are possible, the most useful
partitioning is the per-surrogate partitioning mentioned in the
previous section. It is solely for simplicity that we state
explicitly specializations on mainly a per-relation basis. In
fact, the application of the specializations on a per-partition
basis may, in many situations, prove to be more relevant, as
discussed in Section 111-G.

By its very nature, a taxonomy should be comprehensive.
While striving toward achieving this, we have attempted
to include only specializations that are of practical interest.

We show in Section 111-A that with some restrictions, the
taxonomy based on isolated events is complete in that all
possible interactions are accommodated. The interevent-based
taxonomy is restricted to cover the concepts of sequential-
ity and regularity, and the isolated interval-based taxonomy
covers only regularity. The interinterval-based taxonomy dis-
tinguishes between temporal relations, where items successive
in transaction time have valid time intervals related in one of
the 13 possible ways of ordering two intervals. In this sense,
the taxonomy is comprehensive within its scope.

The space of specialized temporal relations in the taxonomy
may be too large for some uses. To address this potential
problem, we have organized the specializations in general-
ization/specialization hierarchies. Applications that require a
small number of specializations may simply consider only the
more general specializations.

A . Taxonomy on [solated Events

In this section, we consider only events that take place at
an instant of time in reality. Let R be a temporal relation,
and let e be an item of R. Each item e has a single valid
time, vte, indicating when the event took place in reality. We
consider only a single transaction time, tt , , which is either
the insertion or the deletion time, that is, either tt; or tt:.
Each property (e.g., retroactive, where an item is valid before
it is operated on in the database) is relative to one of these
two times. For example, it is possible for a relation to be
deletion retroactive, but not insertion retroactive. As discussed
earlier, a modification consists of a deletion followed by an
insertion. If a relation is, say, deletion retroactive and insertion
retroactive, it can also be considered modification retroactive.
The definitions that follow mention only a single valid time
vt, and a single transaction time tt,. In examples where we
illustrate the definitions, we assume that tt, is tt; (i.e., we
consider insertion, not deletion or modification).

We formally define a number of specialized temporal re-
lations by restricting the allowed interrelations between valid
and transaction timestamp values of isolated items. Fifteen of
the specialized relations are illustrated in Fig. 1 (an altemative
depiction of subareas of the 2-D valid timehransaction time
space is given elsewhere [30]). The bold, vertical line in the
center represents the transaction time, tt,, of an item. The valid
time of the item may have a certain relationship with this trans-
action time. The surrounding dotted lines represent bounds. In
a nonspecialized temporal relation (termed general), there are
no restrictions on the interrelations of, or correlation between,
the transaction and valid timestamps of an item. The dots for
the three last cases in the figure symbolize specific valid times
computed in terms of corresponding transaction times.

Definition: Temporal relation R is retroactive if

Ve E R (vt, 5 t t ,) .

Thus, the values of an item are valid before they are entered
into the relation; i.e., the event occurred before it was stored.
Retroactive relations are common in monitoring situations,
such as process control in a chemical production plant, where
variables such as temperature and pressure are periodically

~

958 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 6, DECEMBER 1994

t t e

retroactive

delayed retroactive

predictive

early predictive

retroactively bounded

strongly retroactively bounded

delayed strongly retroactively bounded

strongly predictively bounded

early strongly predictively bounded

strongly bounded

predictively bounded

general

degenerate

retroactively determined

predictively determined

4 valid time c

Fig. 1. Possible values of the valid timestamp relative to the transaction timestamp.

sampled and stored in a database for subsequent analysis.
Further, it is often the case that some (non-negative) minimum
delay between the actual time of measurement and the time a
storage can be determined. For example, a particular setup for
the sampling of temperatures may result in delays that always
exceed 30 s. This gives rise to a delayed retroactive relation.

Definition: Temporal relation R is delayed retroactive with
bound At 2 0 if

Ve E R (vt, 5 tt, - At).

In this and in the other specializations that refer to a time
bound At, this time bound is a duration that may be fixed in
length (e.g., 30 s, one day) or calendar-specific. An example
of the latter is one month, where a month in the Gregorian
calendar contains 28 to 31 days, depending on the data to
which the duration is added or subtracted.

Definition: Temporal relation R is predictive if

Ve E R (vt , 2 t t ,) .

Thus, the values of an item are not valid until some time
after they have been entered into the relation. An example is a
relation that records direct deposit payroll checks. Generally,
a copy of this relation is made on magnetic tape near the end
of the month, and is sent to the bank so that the payments can
be effective on the first day of the next month. Analogously
with the delayed retroactive temporal relation that specializes
the retroactive temporal relation, the early predictive temporal
relation is the specialization of the predictive temporal relation.

Definition: Temporal relation R is early predictive with
bound At 2 0 if

Ve E R (vt, 2 tt, + At).

The direct deposit payroll check relation is an example if the
tape must be received by the bank at least, say, three days
before the day on which the deposits are to be made effective.
Also, this type of relation may be encountered within early
warning systems where warnings must be received sometime
in advance.

In items of retroactively bounded temporal relations, the
validtimestamp never is less than the transaction timestamp by
more than a bounded time interval. In all bounded, delayed,
and early relations, the bounds are fixed at schema definition
time.

Definition: Temporal relation R is retroactively bounded
with bound At 2 0 if

Ve E R (vt, 2 tt, - At).

Note that in a retroactively bounded relation, the valid time-
stamp may exceed the transaction timestamp. An example is
a relation recording the project to which each employee is
assigned. Although assignments may be recorded arbitrarily
into the future, an assignment is required to be recorded in the
database no later than one month after it is effective.

Definition: Temporal relation R is strongly retroactively
bounded with bound At 2 0 if the following is true:

'de E R (tt, - At 5 ut , 5 tt,).
The sample relation just discussed is strongly retroactively
bounded if future assignments are not stored in the relation.

JENSEN AND SNODGRASS: TEMPORAL SPECIALIZATION AND GENERALIZATION 959

In a delayed strongly retroactively bounded relation, an
additional upper bound (minimum delay) is also imposed.

Definition: Temporal relation R is delayed strongly retroac-
tively bounded with bound At, 2 0 and At2 2 0, where
At1 5 At2 , if

Ve E R (tt, - At1 5 ut, 5 tt, - At,).

The relation that records the assignments of employees is an
example of this type of relation if only past assignments are
recorded, e.g., if assignments are recorded at most one month
after they were effective and if it takes at least two days from
the time when an assignment is finished until this is known
by the data entry clerk.

The strongly predictively bounded and the early strongly
predictively bounded relations are symmetrical to the two pre-
vious specialized temporal relations. Here, the valid timestamp
is in a bounded duration after the transaction timestamp, and
the early specialization also adds a (positive) lower bound on
the valid timestamp.

Definition: Temporal relation R is strongly predictively
bounded with bound At 2 0 if the following is true:

Ve E R (ti, 5 vt, 5 tt, + At).

Definition: Temporal relation R is early strongly predic-
tively bounded with bounds At1 2 0 and At2 2 0, where
At1 5 At2, if

Ve E R (tt, + At1 5 vt, 5 tt, + At,).

Direct deposit of paychecks illustrates both types of special-
ization. The company wants the checks to be valid on the first
of the month, but it wants also to make the tape to be sent
to the bank as late as possible, generally at most one week
before the end of the month. In addition, the bank needs the
tape at least three days in advance.

Definition: Temporal relation R is strongly bounded with
bounds At, 2 0 and At2 2 0 if the following is true:

Ve E R (tt, - At1 5 vt, 5 tt, + At,).

Here, the valid timestamp may deviate only from the trans-
action timestamp within both upper and lower bounds. Intu-
itively, information concems only the current situation, except
that recently valid information and information valid in the
near future can be recorded and updated. An example is
an accounting relation recording the current month’s transac-
tions. Corrections to entries of previous months are stored as
compensating transactions in the current month; transactions
conceming future months are made to a separate relation.

Definition: Temporal relation R is predictively bounded
with bound At 2 0 if

Ve E R (vt, 5 tt, + At).

Note that in a predictively bounded relation, the valid time-
stamp may be less than the transaction timestamp. In such
relations, only information conceming the past and the near-
term future may be stored. An example is an order database
in which pending orders, constructed by company policy to
be no more than 30 days in the future, are stored along with

previously filled orders. This kind of relation is symmetric
with retroactively bounded relations.

Definition: Temporal relation R is degenerate if

V e E R (vt, = tt,).

An example is a monitoring situation in which there is no time
delay (within the timestamp granularity) between sampling a
value and storing it in the database. At the implementation
level, a degenerate temporal relation can be advantageously
treated as a rollback relation because relations are append-only
and items are entered in timestamp order. This is discussed
in more detail in Section VIII. The process of recording
degenerate relations is referred to as the asynchronous method
[621.

A mapping function m for a relation R takes as argument an
item e of a relation and retums a valid timestamp, as computed
by using any of the attributes of e, excluding vt,, but including
the surrogate and transaction timestamp attributes. Sample
mapping functions include ml(e) = tt; + At (“valid after
a fixed delay”), m2(e) = Ltt; - AtJhrs (“valid from the most
recent hour”), and m3(e) = rttL1 day + 8 hrs. (“valid from the
next closest 8:OO A.M.”).

Definition: Temporal relation R is determined with map-
ping function m if the following is true:

Ve E R (vte = m(e)).

Similarly, a relation is undetermined if such a function does not
exist. For each of the undetermined specialized temporal rela-
tions defined already in this section, there exists a determined
version. To illustrate, we consider three determined versions.

Definition: Temporal relation R is retroactively determined
with mapping function m if the following is true:

Ve E R (vte = m(e) A m(e) 5 tt,).

Thus, a determined relation has a given type if its mapping
function obeys the requirement of the type. For example, a
relation is retroactively determined if each item is valid from
the beginning of the most recent hour during which it was
stored.

Definition: Temporal relation R is predictively determined
with mappingfunction m if the following is true:

Ve E R (vt, = m(e) A m(e) 2 tt,).

For example, a relation is predictively determined if it is
valid from the next closest 8:OO A.M. Such a relation might
be relevant in banking applications for deposits that are not
effective until the start of the next business day.

For further illustration, we present a bounded version.
Definition: Temporal relation R is strongly retroactively

bounded determined with mapping function m and bound
At 2 0 if

Ve E R (vt, = m(e) A tt, - At 5 m(e) 5 tt,).

The examples given previously were in fact bounded.
The generalizatiordspecialization structure of the specialized

temporal relations defined above is presented in Fig. 2. A
relation type can be specialized into any of the successor

960 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 6, DECEMBER 1994

early

general

undetermined

retroactively bounded predictively bounded

predictive m strongly bounded retroactive

predictive strongly predictively bounded strongly retroactively bounded delayed retroactive

early strongly predictively bounded degenerate delayed strongly retroactively bounded

Fig. 2. Generalization/specialization structure of the event-based taxonomy

relation types, and a relation type inherits all the properties
of its predecessor relation types (as well as adding additional
properties). For clarity, we have included only undetermined
relation types; there exist determined counterpart of all the
undetermined specialized temporal relations, e.g., strongly
bounded determined.

The isolated event-based taxonomy is complete with certain
assumptions. Note that the specializations in this section
correspond to regions of the 2-D space spanned by transaction
and valid time [30]. There are five assumptions. First, we are
interested only in undetermined relationships. Second, we are
interested only in regions bounded by lines parallel to the
line tt, = vt,. This means that we do not wish to consider
relationships that are dependent on absolute values of the
timestamps, such as, say, the specialization that vt, 2 2 . tt,.
Third, we consider only relative restrictions on the relationship
between valid and transaction times. In combination with the
previous assumptions, this implies that only three kinds of
lines are of interest when describing restricted regions of the
2-D space, namely, lines parallel to tte = vt, for which
(1) vt, > tt,, (2) vt, = tt , , or (3) vt, < tt,. Absolute
bounds may be added later by the user of the taxonomy.
Fourth, we consider only <-versions; pure <-versions and
mixed versions may be obtained easily. Fifth, only connected
regions are considered. Such resigns may be used as building
blocks to form nonconnected regions. As a consequence of
the assumptions, at most two lines are required,for describing
any possible region.

With zero lines, we can form no restrictions. Thus, we have
a general temporal event relation. With one line, there are two
distinct regions for each of the three line types, resulting in
six distinct, specialized temporal event relations: early predic-
tive and predictively bounded, predictive and retroactive, and
retroactively bounded and delayed retroactive, respectively.
With two lines, there are five possibilities corresponding to the
combinations (using the numbering of the previous paragraph):
(1) and (1) (early strongly predictively bounded), (1) and
(2) (strongly predictively bounded), (1) and (3) (strongly
bounded), (2) and (3) (strongly retroactively bounded), and

(3) and (3) (delayed strong retroactively bounded). The result
is a total of 11 types of specialized temporal relations, each
of which is included in the taxonomy.

B . Interevent-Based Taxonomy

The previous definitions were based on predicates on in-
dividual event timestamped items. A relation schema had
a given property if each individual item of any extension
meaningful in the modeled reality of the schema satisfied
the relevant predicate. We now define restrictions on relation
schemas based on the interrelationships of multiple event
timestamped items in all possible extensions. We examine
two aspects: orderings between items and regularity. In this
and later sections, we continue to assume in the examples and
explanations that tt, is tt;. Recall that though the definitions
are made on a per-relation ("global") basis, they may also be
made on a per-partition basis with an arbitrary partitioning,
e.g., the per-surrogate partitioning.

Definition: Temporal relation R is globally sequential if the
the following condition2 is true:

Ve E R 'de' E R (tt, < tt,,
(max(tt,, ut,) 5 min(tt,r, ut, !))) .

In globally sequential relations, each event must occur and be
stored before the next event occurs or is (predictively) stored.
Therefore, valid time can be approximated with transaction
time, yielding an append-only relation that can support histor-
ical (as well as transaction time) queries. Such relations may
be viewed as approximations to degenerate relations. As an
example of the application of this property on a per-partition
level, R is per-surrogate sequential if 'dx E TI^(R) , g ldTa : (R)
is globally sequential, where Id is the surrogate attribute.

Definition: Temporal relation R is globally nondecreasing
if the following is true:

Ve E R 'de' E R (tt, < tt,, + vt, < v t , ~) .

2Altematively, we could define sequentiality as follows. Ve E R Vr' E
R ((P = e ') V (niax(tt,,at,) 5 min(tt,t ,ot,t)) V (min(tt,,ot,) 2
max(tt,,. u t e /)))

JENSEN AND SNODGRASS: TEMPORAL SPECIALIZATION AND GENERALIZATION 96 1

In such a relation, items are entered in valid timestamp
order. Sequentiality is generally a stronger property than
nondecreasing. However, if the relation is degenerate, then
the two properties are identical.

Definition: Temporal relation R is globally nonincreasing if

‘de E R Ve’ E R (t t , < tt,, =+ vt, 2 vtet).

In such relations, as transaction time proceeds, we enter
information that is valid further and further into the past. An
example is an archeological relation that records information
about progressively earlier periods uncovered as excavation
proceeds.

Regularity-where transaction time, valid time, or both
times occur in regular intervals-is often encountered in
temporal relations.

Defnition: Temporal relation R is transaction time event
regular with time unit At 2 0 if the following is true:

Ve E R Ve‘ E R 3k$(tt, = tt,! + ICE’At).

Note that the transaction timestamps of successively stored
items need not be evenly spaced; they are merely restricted
to be separated by an integral multiple (IC:) of a specified
duration, At. An example is a periodic sampling of some
physical variable such as temperature. The process of record-
ing transaction time event regular relations is referred to as
the synchronous method [62].

Definition: Temporal relation R is valid time event regular
with time unit At 2 0 if the following is true:

Ve E R Ve’ E R 3ICz‘(vt, = vt,, + k:’ At).

The concept of granularity of valid timestamps can be ex-
pressed in terms of this property. For example, if the valid
timestamp granularity is 1 s, then, equivalently, the relation is
valid time event regular with the time unit 1 s.

Definition: Temporal relation R is temporal event regular
with time unit At 2 0 if the following is true:

Ve E R Ve‘ E R 3k,“’(vt, = v t , ~ +IC:‘ At Att, = tt,, + kz’ At).

A periodic degenerate relation is triviapy temporal event
regular. Note that the same values of IC: must satisfy both
transaction and valid time. Therefore, temporal event regular
is more restrictive than both valid and transaction time event
regular together. Next we define strict versions of the three
different variants of regular specialized temporal relations.

Definition: Temporal relation R is strict transaction time
event regular with time unit At 2 0 if the following is true:

Ve E R (l e ’ E R (tt,, = tt, + At
A 1 3 e ” E R (t t , < tt,!! < t t , ,))

V -de‘ E R (rtef > t t ,)) .

Thus, either e’ is the next item after e, or e is the last item
stored.

globally sequential

Fig. 3.
omy. Part I: Orderings.

Generalization/specialization structure of the interevent-based taxon-

Definition: Temporal relation R is strict valid time event
regular with time unit At 2 0 if the following is true:

Ve E R (3e’ E R (vt,, = vt, + At
A 4 e ” E R - {e, e’}(vt, 5 vt,!! 5 vt ,!))

V 13e ’ E R (vt,, > v t ,)) .

This definition is slightly more complicated than the previous
one, because we want to disallow items with identical valid
items (which is already impossible with transaction time).

Definition: Temporal relation R is strict temporal event
regular with time unit At 2 0 if the following is true:

’de E R ((3e’ E R (tt,! = tt, + At A vt,! = vt, + At
A 1 3 e ” E R (t t , < t t , ~ ~ < tt,,)
A d e ’ ’ E R - {e, e’}(vt, 5 Vt,” 5 N e t)))

V (d e ’ E R (tt,r > tt,) A +le’ E R (Vtej > v te))) .

Although somewhat complex, this definition is just the com-
bination of the two previous definitions using the same time
unit for both valid and transaction time.

Note that if relation R’ is transaction time event regular with
time unit At1 and valid time event regular with time unit Atz,
then R’ is also temporal event regular, with the temporal time
unit At3 being some common divisor of At1 and Atz. Thus, if
At, = 28 s and At2 = 6 s, then At3 = 2 s (largest common
divisor). For the strict case, however, valid and transaction
time event regulariy does not imply temporal event regularity.

Analogously with the ordering properties, the above reg-
ularity properties can be defined in a global or per-partition
fashion. However, the nonstrict versions have the additional
property (not shared with ordering and strictness) .that the per-
partition variant implies the global variant. Note that regularity
is a different property than periodicity, which encodes facts
such as something is true from 2 P.M. to 4 P.M. during
weekdays [391.

All of these characterizations are orthogonal to those given
in the previous section for individual events, except that a
degenerate event relation is necessarily globally ordered.

The generalization/specialization structures for the temporal
relations defined in this section are outlined in Figs. 3 and 4.
The two structures are orthogonal.

C . Taonomy on Isolated Intervals

We now tum to interval relations, that is, those relations
in which, for each item e of the relation, the valid time is
an interval, [vtL,vt:). The transaction times of the item, tt;
and tt:, are defined as before. As in Section 111-B, IC (possibly
indexed) is an integer. -

962 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 6, DECEMBER 1994

general

transaction time d event regular valid time event regular

strict temporal event regular

Fig. 4. Generalization/specialization structure of the interevent-based taxonomy. Part 11: Regularity.

The previous characterizations of events may also be applied
to either v c or vt:. For example, if an interval is stored as
soon as it terminates, a designer may state that the interval
relation is vp-retroactive and vti-degenerate. If the relation
is, say, vt‘-retroactive and vti-retroactive, it may simply be
termed retroactive.

A temporal relation is transaction time regular, valid time
regular, or temporally regular if the transaction time inter-
vals, valid time intervals, or both transaction time and valid
time intervals are regular, respectively. Note again that these
properties concem durations rather than starting events, and
that they can be calendar-specific, e.g., one month.

Definition: Temporal relation R is transaction time interval
regular with time unit At 2 0 if the following is true:

Ve E R 3ke(tt,’ = tt; + Ice&).

Definition: Temporal relation R is valid time interval reg-
ular with time unit At > 0 if the following is true:

Ve E R 3ke(vt: = vt; + k,At).

Altematively, the duration of all intervals in such a relation is
an integral multiple of a specified time unit. An example is a
relation recording new hires and terminations that observes
a company policy that all such hires and terminations be
effective on either the first or the fifteenth of each month.

Definition: Temporal relation R is temporal interval regu-
lar with time unit At if the following is true:

Ve E R 3kL 3kz(tt: = tt; + ICiAt A vt,’ = vt; + k:At).

Hence, the time unit must be identical for both transaction
and valid time.

The situations where all intervals have the same length
are interesting special cases of the above definitions with
IC,, ki, and k: equal to 1. We term these special cases strict
transaction time interval regular, strict valid time interval
regular, and strict temporal interval regular.

Recall that the concept of regularity may be applied to
relations on a per-partition basis as well as globally (as
discussed at the beginning of this section).

The specializations in the previous section concem event re-
lations, and the specializations in this section concem interval
relations; they are quite different. However, the general-
ization/specialization structure of the specializations in this
section is identical to that of the previous section, as illustrated
in Fig. 4, with the exception that “event” is replaced by
“interval.”

D. Interinterval-Based Taxonomy

As with events, we distinguish restrictions that are applied
individually to all intervals and restrictions on the interrelation-
ship between multiple intervals in a relation. The restrictions
listed below apply to relations, but they may be applied on
a per-partition basis as well. Many of these same terms also
apply to event relations, and where defined in Section 111-B.
Context should differentiate these uses.

Definition; Temporal relation R is globally sequential if the
following is true:

Ve E RVe’ E R (tt, < tt,! +
(max(tt,, vt:) 5 min(tt,t, ~ 6 ,))) .

In such a relation, each interval must occur and be stored
before the next interval commences. An example involves
the relation previously discussed that records the weekly
assignments for employees. If the assignment of the next week
is recorded during the weekend, then this relation will be
per-surrogate sequential.

A relation is nondecreasing if items are entered in valid
timestamp order, and it is nonincreasing if items are entered
in reverse valid timestamp order.

Definition: Temporal relation R is globally nondecreasing
if

Ve E R Vel E R (tt, < ttet + vt: 5 vt:,).

JENSEN AND SNODGRASS: TEMPORAL SPECIALIZATION AND GENERALIZATION 963

general

globally non-decresring globally non-increasing

globally sequential @-meets)

Fig. 5. Generalizatiodspecialization structure of the interinterval-based taxonomy.

Concerning the example just discussed, let us now record on
each Thursday the next week’s assignment. In this case, the
transaction time (i.e., Thursday) of the next week’s assignemnt
(on a per-surrogate basis) will occur during the valid time
interval of the current week’s assignment, and the relation
will be per-surrogate nondecreasing.

As with events, sequentiality is a stronger property than
nondecreasing.

Definition: Temporal relation R is globally nonincreasing if

V e E R Ve’ E R (tt , < tt,, + vt;, 5 v t z) .

Definition: Temporal relation R is globally contiguous if
the following is true:

V e E R (3’ E R - {e}(vt,’ = v& A tt, < tt,,
A 13e” E R - { e , e’}

(t t e < t t e f , < t t e !))

V Ve’ E R - {e}(vtL 2 vt: ,)) .

This definition states that in a globally contiguous relation, the
end of one event coincides with the start of the next event that
is stored, unless the event is the last one in the sequence, in
which case it occurs after all the other events. An example is
given in Section 111-F.

Allen has demonstrated that there exist a total of 13 possible
relationships between two intervals [7]. These relationships
may be denoted before, meets, overlaps, during, starts,finishes,
equal, and the inverse relationships for all but equal, e.g.,
inverse before and inverse finishes. For each such relationship,
X, we can define a property successive transaction time X that
requies that items, successive in transaction time, are related
by X. For example, the property successive transaction time
overlaps requires that intervals that are adjacent in transaction
time overlap in valid time, ensuring that the next item began
before the previous one completed.

Definition: Temporal relation R is successive transaction
time X if the following is true:

Ve E R (3e’ E R - {e} (v t ,Xvt , ,A tt, < f r e t

A 7 3 e ” E R - { e , e ’ } (t t , < t t , ~ ~ < f r e t))

V V e ’ E R - { e } (t t , 2 t t , !)) .

Of these, the most interesting is successive transaction time
meets, which is defined above as globally contiguous.

general temporal
I
I
I
I
I
I
I
I
I
I

transaction time incomplete
I
I
I
I
I

I
I
I
I

historical

Fig. 6.
temporal relations.

Generalizatiodspecialization structure of transaction time incomplete

Fig. 5 illustrates the specilizatiordgeneralization structure
for the properties discussed above. In this figure, successive
transaction time is abbreviated ‘st-’, and successive transaction
time inverse is abbreviated ‘sti-’.

E . Transaction Time Incompleteness

There is one type of restriction, orthogonal to the previously
mentioned restrictions, that has not yet been discussed, namely,
transaction time incompleteness.

A temporal relation must record all previous historical states
to permit arbitrary rollback. A temporal relation is transaction
time incomplete if some previous historical states are missing.
At one end of the spectrum of incompleteness, we find a
historical relation (i.e., only the current historical relation is
recorded). At the other end, we have a complete temporal
relation where all historical relations that were current at
some point are retained. In between, many options exist. Such
options include storing every nth historical state, saving the
historical state at periodic intervals (yielding a transaction
time event regular relation), and saving the historical state
at arbitrary, manually specified transaction times.

The specialization/generalization structure of transaction
time incomplete temporal relations is shown in Fig. 6, where
the dashed lines indicate intermediate, incomplete relations.

F . Event and Interval tnterrelationships

Let us consider how event and interval properties relate to
one another. A common implementation technique is to store
incoming events in a backlog relation [251,2] and derive

964 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 6, DECEMBER 1994

parameterized

Fig. 7. Four types of specializations on temporal relations.

an interval relation by interpreting each event as ending an
interval started by the previous event (on a global or per-
partition basis) and starting a new interval. An example is an
event relation recording promotions and their associated title
and salary changes; the resulting interval relation records when
the salaries and titles were in effect.

If the backlog of events is globally (alternatively, per-
partition) sequential, then the derived interval relation will
be globally (per-partition) sequential. The same holds for
globally/per-partition ordered. If the backlog is transaction
time (valid time, temporal) event regular, then the derived in-
terval relation will be interval regular. In all cases, the derived
interval relation will be globally (per-partition) contiguous.
Hence, our example interval relation will be per-partition
ordered, sequential, and contiguous.

Also observe that a temporal interval relation is valid time
interval regular or temporal interval regular if both its starting
(w t ‘) and ending (w t ’) times are valid time event regular
or temporal event regular, respectively. In such relations, the
starting and ending time of each item are related to the starting
and ending time of other items by an integral multiple of a
duration, At.

G . Interrelations Between Per-Relation and
Per-Partition Specializations

We now consider the interrelations of specializations when
applied on a per-relation basis, on the one hand, and when
applied on a per-partition basis, on the other.

For a specialization (e.g., retroactively bounded with bound
At) on a relation on hold on a per-relation basis, the set of all
items in the relation must satisfy the specialization. In order
for a specialization to hold on a per-partition basis, for some
given partitioning (e.g., per-surrogate), the specialization must
be satisfied in turn by the set of items of each partition of the
partitioning.

We proceed by dividing specializations into four categories,
as shown in Fig. 7. A specialization is per-item if it applies
to individual items in isolation (cf. Sections 111-A and III-
C) ; otherwise, it is interitem (cf. Sections 111-D and 111-E).
Orthogonally, specializations can be simple, e.g., “retroactive,”
or they can be parameterized. For example, “retroactively
bounded with bound At” is parameterized with parameter At.

Let us assume that a relation schema in tum satisfies
each of the four types of specializations on a per-relation
basis. Then we consider how to characterize the relation
schema on a per-partition basis. Let R be a sample extension
of the relation schema. If R satisfies a per-item, simple
specialization on a per-relation basis, then R also satisfies
that specialization on a per-partition basis. This observation,
and each of the observations in the following, is true for
any partitioning and any specialization. For example, if R
is retroactive per relation, then R is also retroactive on a

per-surrogate basis. Let an arbitrarily chosen partitioning be
given that divides R into k partitions. If R satisfies a per-
item, parameterized specialization with parameter x, then
R satisfies that specialization on a per-partition basis with
parameters x1,52, . . . , xk, where each of the x; are at least
as restrictive as x. For example, if R i s retroactively bounded
with bound At per relation, then there exists tighter bounds
At, , At,, . . . , Atk, so that R is retroactively bounded with
these bounds per surrogate.

We now assume that a relation R satisfies specializations
of the four types on a per-partition basis for some given,
arbitrarily chosen partitioning that divides R into IC partitions.
Again, the particular specialization may be chosen arbitrarily.
If R satisfies a per-item, simple specialization per partition,
then R also satisfies that property on a per-relation basis. If R
satisfies, on a per-partition basis, a per-item, parameterized
specialization with parameters x1,22, . + . , x k , then R also
satisfies the specialization on a per-relation basis, and the
parameter x is equal to the least restrictive parameter among
the xi.

In the remaining four cases where we consider interitem
specializations instead of per-item specializations, no general
statements may be made.

H . Summary

We have presented an extensive taxonomy of specialized
properties of temporal relations. The practical relevance of the
definitions is emphasized by examples. The properties apply
to either event or interval temporal relations. A relation may
have specialized per-item properties (Sections 111-A and III-
C) as well as specialized interitem properties (Sections 111-B
and 111-D). A relation may also be transaction time incomplete
(Section 111-E). All three types of properties may be applied on
either a per-relation or on a per-partition basis. Partitionings
may be chosen arbitrarily, but the most important partitioning
is the per-object surrogate partitioning.

We described how an event relation may be naturally
interpreted as an interval relation, and we discussed how the
event properties would transform into corresponding interval
properties. Additionally, we described how per-item proper-
ties, simple as well as parameterized, when satisfied on a
per-relation basis, would essentially be satisfied on a per-
partition basis and, conversely, independently of the particular
partitioning.

Iv . CLASSIFICATION OF EXISTING TEMPORAL
DATA MODELS

The taxonomy of specialized temporal relations provides a
coherent framework that covers all existing temporal relational
data models known to us, and allows one to more faithfully
describe, distinguish, and understand these data models. We
illustrate this by using taxonomy to perform such a characteri-
zation. We proceed by successively applying greater temporal
specialization.

A . General Temporal Relations

General temporal relations are found in only a few data
models [8], [53]. The snapshot mechanism [6] may be ex-

IENSEN AND SNODGRASS: TEMPORAL SPECIALIZATION AND GENERALIZATION 965

tended to support general temporal relations. A snapshot of
a relation is an independent copy of a current state of that
relation at the time of the snapshot. Thus, snapshots are
derived from base relations, but they do not change when
the underlying base relations change [5], [36]. The snapshot
mechanism may be applied to a relation in three ways [2]-[4].
First, there is the manual snapshot where a generate-
version command is used to create a shapshot (termed
a “manual album”). Second, there is the periodic snapshot
(termed an “automatic album”) where, for example, the user
may specify, “Keep snapshots for the end of the month for a
window of 12 months.” Third, there is the successive snapshot
where the system creates a new snapshot every time the
underlying relation is updated (termed a “movie”).

Although Adiba applies only the snapshot mechanisms to
conventional relations, there is no reason why they cannot also
be applied to historical relations. Successive snapshots of an
historical relation (a historical movie) result in a general tem-
poral relation. Applying the snapshot mechanism manually or
automatically to historical or conventional relations produces
specialized temporal relation, as we shall see shortly.

B . Retroactive Temporal Relations

Gadia presents a multidimensional temporal data model that
is in turn restricted to a 2-D data model with valid and trans-
action time as the dimensions [18]. In this model, however,
only data valid in the past may be stored. For example, it is
impossible to store on May 1 1 , 1991, the fact, “As of now, Dr.
Iovanni is hired as an assistant professor from September 1,
1991, until August 31, 1997.” Therefore, the model does not
support fully general temporal relations; instead, it supports
retroactive temporal relations. The restriction to retroactive
temporal data is inherited from a (retroactive) historical data
model where event timestamps are used for the modeling of
real-world activity [171.

Sarda proposes another specialized temporal data model in
which current facts may be appended and where so-called
retrospective updates (change to information about the past)
are possible [45]. Hence, the transaction time is always equal
to or after the valid time, and, like the previous model, this
model supports retroactive temporal relations.

C . Strongly Retroactively Bounded Relations

In real-time databases, transactions have hard or firm real-
time deadlines [l]. If the deadline passes before the transaction
is executed, the transaction is unscheduled [41]. Hence, the
transaction time of information read by a transaction associ-
ated with a deadline must be strongly retroactively bounded;
otherwise, the transaction deadline makes no sense. Also, the
transaction time of the information stored or modified by the
transaction is strongly retroactively bounded, with its bound
being the bound of the information triggering the transaction
plus the bound of the deadline, which must be known if it can
be ensured that deadlines will always be met [41].

D. Degenerate Temporal Relations

Relations representing time sequences and time sequence
collections of the TSC model [42], 1471, [49], 1511 may be

classified as degenerate temporal relations. Such sequences
are totally ordered in time; presumably, facts are recorded
in the database as soon as they are collected. Among the
representations given for time sequence collections [48] is
a per-surrogate contiguous relation that is also per-surrogate
sequential.

The POSTGRES data model [43], [60] supports degen-
erate temporal relations in that facts valid now in the real
world are stored now, and all past states are retained. The
POSTGRES query language [59] supports rollback (viewing
the time dimension as transaction time) and historical time-
slice (viewing the time dimension as valid time), but does not
support general historical queries. This query language may be
viewed alternatively as an extended rollback query language
or as a highly restricted historical/temporal query language.

Jensen’s data model is fundamentally a transaction time
model [25]. Thus, all updates are physically append-only. Only
event timestamps are possible, and they are unique, increasing,
and system-supplied. Additionally, the assumption is made
that time-varying attributes have stepwise constant semantics
[27], [28]. As a result, the model is appropriate only for
modeling the history of the update activity of the database.
However, because it allows for irregular timestamps reflecting
real time, it may be used as a temporal data model when the
transaction and valid times of items coincide; hence, it is also
a degenerate temporal model. Similarly, successive snapshots
of a conventional relation (a movie) produce a degenerate
temporal relation [4].

In the Applicative Data Model [24], changes cannot be made
to data that have already been stored; hence, an applicative
historical relation is a degenerate temporal relation.

Adiba introduced an append-only relation that may be
modified using special error-correcting operations [31. Without
the ability to modify, this is a degenerate temporal relation.
With the ability to change the past, it is an historical relation,
restricted in that one cannot change or record future events.

Finally, a variety of data formats are available for time series
analysis [121. Some are degenerate, some are transaction time
event regular, and most are globally ordered.

E . Transaction Time Incomplete Temporal Relations

When applied to ordinary relations, manual and periodic
snapshots produce transaction time incomplete degenerate
relations. Because a snapshot is a copy of the current state
when the snapshot is made, it is possible to roll back to a
previously current state if a snapshot was made during the
time when that state was current. Thus, unless a snapshot is
made whenever the current state is updated (i.e., unless we
have a movie), one must guess ahead in time which rollbacks
will be needed later.

When applied to historical relations, manual and periodic
snapshots produce transaction time incomplete temporal rela-
tions. Here, historical queries are fully supported, but rollback
to only some of the transaction times is possible.

F . Summary

We have demonstrated how the taxonomy of specialized
temporal relations may be used for characterizing previously

966 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. VOL. 6, NO. 6, DECEMBER 1994

proposed time-oriented data models. We showed how many
of the previously proposed data models that incorporate only
one time dimension may be viewed as specialized temporal
relations over both valid and transaction time. Interestingly, no
one, to our knowledge, has studied the predictive, determined,
early, or delayed variants, even though situations exist where
such specialized temporal relations are useful.

v. GENERALIZED TEMPORAL RELATIONS

To this point, we have considered individual temporal
relations in isolation. We have focused on temporal special-
ization, considering the restrictions that may be placed on
the valid and transaction timestamps of a temporal relation,
thereby coupling the two timestamps in some fashion. Now we
change perspective and consider temporal relations as part of
larger application systems where items move between multiple
temporal relations. We investigate temporal generalization,
which involves decoupling timestamps. In the next section,
we describe two example applications that use specialized and
generalized temporal relations.

The concepts of specialization and generalization have been
used previously within data modeling. A subclass may be
created from a class by means of specialization, i.e., by
making the defining properties (the intension) of the class
more restrictive, and thus also restricting the set of examples
(the extension) of the class. As the dual, a superclass may
be created from a class by means of generalization, i.e., by
making the intension of the class less restrictive, and thus
expanding the extension of the class [15], [23], [52].

Temporal specialization and generalization are also duals.
As we have seen, specialization contracts the space of pos-
sible interrelations of timestamps. Temporal generalization
appears in at least three guises, each of which expands the
space of possible interrelations of timestamps. The first is
removing restrictions. For example, an early strongly pre-
dictively bounded relation may be generalized to a strongly
predictively bounded relation, which may be generalized to
a predictively bounded relation, which may be generalized to
a general temporal relation. Specialization involves moving
down the lattices given in Section 111, thereby contracting the
2-D space of possible interrelations; generalization involves
moving up these lattices, expanding the space of possible
interrelations.

A second way to define a generalized temporal relation is
to simply add completely new, orthogonal time dimensions.
In systems where items flow between multiple temporal re-
lations, items may accumulate timestamps by keeping their
previous timestamps and gaining new timestamps as they
are entered into new temporal relations. Consequently, an
item in a generalized temporal relation has several kinds of
timestamps: a valid timestamp, which records when the item
was true in reality, a primary transaction timestamp, which
records when the item was stored in this relation, one or
more inherited transaction timestamps, which record when
the time was stored in previous relations, and one or more
TSG-generated timestamps that record when the item was
manipulated elsewhere in the system.

A third, more involved, means of defining generalized
relations is to have derived relations inherit transaction time-
stamps from their underlying relations. For example, consider
process control in a chemical manufacturing plant. Values from
temperature and pressure sensors may be stored in temporal
relations. The sensed data may later be processed further to
derive new data, such as the rate at which the reaction appears
to be progressing [41]. This derivation typically would depend
on past temperature and pressure trends. Stored in the derived
temporal relation recording the reaction rate would be the
transaction time at which the rate was recorded, along with
one or more inherited transaction times, specifying when the
underlying data, the temperature, and pressure readings were
originally recorded, thereby providing an indication of the
relevance of the calculated rate.

Specialization may be applied to any two time dimen-
sions. Consequently, standard 2-D temporal relations may be
perceived as multidimensional generalized temporal relations
in which the values of the additional time dimensions are
specialized to be identical to those of the standard transaction
time dimension.

Transaction timestamps added to a relation by temporal
generalization are generated elsewhere in the system by time-
stamp generators. During the design of a generalized temporal
relation, the sources of these additional timestamps must be
identified; this is done by specifying a system topology.

A system may have two kinds of passive components,
temporal relations and buffers. Temporal relations, already
described in detail, contain temporal data that may be updated
and queried from outside the system. Buffers are intemal data
stores that are not seen from outside the system.

A system may contain several kinds of active components.
Data is received by either serzsurs or processors. In a mon-
itoring scenario, data are recorded by sensors that observe a
portion of the real world being modeled. In a manual scenario,
data are received by a processor, as a result of either data input
by a user or data retrieved from an on-line source. Data may be
timestamped. A timestamp generator (TSG) is a mechanism
that retums timestamp values on demand. Manually supplied
data may or may not contain a valid timestamp. If not, the
receiving processor must append a valid timestamp, obtained
upon request from an available TSG. A processor responsible
for entering data into a temporal relation also uses a TSG for
transaction timestamping.

A sensor, sz, forms events (observations). To do so, it sends
requests, r z k , to a TSG and receives timestamps, t i k . The
sensor then appends t , k to the remaining part of the event
and passes the result on,

A processor may request a timestamp from a TSG whenever
it performs an action. For example, a processor may request a
timestamp when it stores data in a buffer or when it retrieves
data from a buffer, and the timestamp may be made part of the
data that is stored. These are TSG-generated time dimensions.
A timestamp added by a processor when it stores an item in
a relation is a transaction timestamp.

Finally, in a system, components of the type mentioned
above may be connected via data channels with no storage
capacity. Connections may be specified between a processor

and a relation, indicating that the processor may read .or
write data in that relation, between a processor and a buffer,
indicating that the processor inserts and deletes data in the
buffer, and between a processor (or sensor) and a TSG,
indicating that the processor (or sensor) may obtain timestamps
from the TSG. The system topology does not specify the
order in which data are sent along data channels, though
specializations of relations may imply a certain data ordering.
In Section VII, we discuss the possible ways of interconnecting
temporal relations.

The system topology is used in this paper only for spec-
ifying the source of inherited timestamp attributes. We do
not differentiate between logically centralized, distributed,
heterogeneous, federated or multidatabases [37], [50], [61].
The system description used here should be applicable in
varying degrees to all of these systems.

We emphasize that generalization expands the space of al-
lowable timestamp values; specialization, which can be applied
to a single timestamp attribute (e.g., a particular timestamp
attribute may be event regular) or to a pair of timestamp
attributes (e.g., degeneracy specifies that both values are
identical), contracts the space of allowable timestamp values.
It is in this sense that generalization and specialization are
exact duals of each other.

VI. EXAMPLE APPLICATIONS

We first discuss a very simple application with a gener-
alized temporal relation containing one inherited transaction
timestamp. We then examine a more involved application
containing several generalized relations.

A . Single Generalized Relation

The system, illustrated in Fig. 8, employs two sensors, SO
and SI, to collect temperature data as the temperature in a
chemical experiment varies over time. Temperature values are
timestamped with the current time when they arrive at a sensor.
The timestamps are obtained from the timestamp generator
tsgo and tsgl . The valid timestamps of the measurement
are assumed to be identical to these sensor timestamps. At
the sensors, the measurements are also stamped with sensor
identifiers. The sensors have no storage capacity; the items
are simply passed on to the processor, which places them in
the buffer. The buffer retains items for periods of time before
they are transaction timestamped (using timestamps obtained
from t s g p) and entered into the relation. The relation thus
contains three timestamps, the valid timestamp, the (primary)
transaction timestamp (from t sgp) , and the sensor timestamp
(from tsgi).

The temporal relation is both specialized and generalized.
It is specialized to a degenerate relation with respect to the
valid and the sensor timestamps, which are identical; indeed,
only one needs to be stored. It is generalized because two
transaction timestamps are recorded in the relation.

Because of the varying maximum delays of items from the
two sensors At,, and At,,, it may be the case that an item
with a later valid time amves before that of an item with
an early valid time. This implies that the items amving at

967 JENSEN AND SNODGRASS TEMPORAL SPECIALIZATION AND GENERALIZATION

~~ ~ -~ ~

buffer

temporal relation

Fig. 8. Buffering of temporal data.

the processor from the sensors are unordered in valid time.
By delaying items at the buffer, we can ensure that the
relation is ordered. Of course, that destroys the relationship
between the sensor timestamp and the transaction timestamp,
which is why the sensor timestamp must be included in the
relation. The buffer allows us to characterize the relation
as globally nondecreasing and as delayed retroactive, with a
bound computable from the various delays in the system.

B . Multiple Generalized Relations

We now present a fairly complex application system that
illustrates many types of specialized temporal relations as
well as multiple transaction times resulting from temporal
generalization. The system contains a collection of temporal
relations maintained by the transportation department of a state
govemment. Its topology is shown in Fig. 9. An employee
relation is maintained on the workstation of each manger
in this department, recording schedules, budgets, and salary
levels for the employees under that manager. For the entire
department, a single personnel relation is maintained on the
administrative computer under the data processing group,
which also maintains a payroll relation. The state’s accounting
office maintains a financial relation. The bank, responsible for
salary payments, maintains an accounts relation. Finally, there
are two log relations that will be discussed shortly.

Eric was hired by LeeAnn at a salary of $2000 per month.
Because of a long and fractious session of the legislature,
salary levels could not be agreed upon until well into the fiscal
year. In mid-March, the state govemment finalized the budget.
LeeAnn decided that Eric would receive a raise of $300 per
month, effective retroactively to March 1 and to be paid to
Eric on the first of the subsequent month. LeeAnn’s secretary

968 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 6, DECEMBER 1994

entered this information into the employee relation, which then
contained the following item.

Employee: name salary vt tt
Eric $2300 Mar 1 Mar26

The valid time is manually supplied by the manager; the
transaction time is automatically recorded by the workstation,
which requests a time from tsgl. Because current, retroactive,
and postactive updates are possible, this relation may be
classified as general.

Once a week a batch job runs on the administrative com-
puter to upload changes made on the managers' workstations.
The job creates an update file, which is applied to the personnel
relation one day later. This job ran on April 1, resulting in the
following item being entered into the personnel database on
April 2.

Personnel: name salary vt tt tt1
Eric $2300 Mar 1 Apr 2 Mar 26

The transaction timestamp, tt, records when the batch job
executed the transaction recording this item; it is supplied
by tsgz. The inherited transaction timestamp, t t l , records
the transaction time of the information in the manager's
workstation; it is copied from the transaction time attribute
stored there. This is an example of a generalized temporal
relation, with one primary transaction time and one inherited
transaction time. The personnel relation is also specialized in
the interaction between tt, supplied by tsg2, and ttl . Thus,
ttl precedes tt by at least a day (the delay in processing the
updated file) and by at most eight days, because an update
may reside in a manager's relation for a week before being

-L

Financial

uploaded, followed by the one-day processing delay. Hence,
the pair tt and ttl in this relation is delayed strongly retroac-
tively bounded with a delay of one to eight days. Conceming
ut and tt, the relation is general; it is also general concerning

The data processing group is responsible, in part, for pro-
ducing paychecks. It does so by creating a tape that is taken
to the bank. The bank requires that such tapes be received at
least two days before the paychecks are to be issued; company
policy dictates an additional day for safety. On March 29, the
payroll relation, which will be copied to tape, contains the
following item.

Payroll: name salary vt tt

The date on which the check is to be issued, April 1, is the
valid time. Note that Eric's March salary is actually $2300.
However, this fact did not make it into the personnel relation
until April 2 (tt in the personnel relation). On April 28, the
payroll relation contains this item.

ut and ttl.

Eric $2000 Apr 1 Mar29

Payroll: name salary vt tt
Eric $2600 May 1 Apr 28

This amount consists of the monthly salary for April, $2300,
plus an additional $300 that was omitted from the March
check. We shall see shortly how this compensating payment
is handled in the financial database.

In the payroll relation, v t will always precede tt by exactly
three days, so this relation may be specialized to predictively
determined by three days. It is also temporal event regular
with an interval of one month, because both the transaction

IENSEN AND SNODGRASS: TEMPORAL SPECIALIZATION AND GENERALIZATION 969

timestamps and the valid timestamps differ by multiples of
one month.

The payroll tape is cut using information from this relation,
and is then carried to the bank, where it is processed sometime
during the next two days to ensure that the amount gets
credited on time. When it does get recorded in the database,
the information is associated with a transaction time from tsg3.
In this case, March’s paycheck was processed on March 30,
and April’s on April 29, resulting in the following relation.

accounts: name credit vt tt
Eric $2000 Apr 1 Mar 30
Eric $2600 May 1 Apr 29

Because the valid time will follow the transaction time by one
to two days, the relation may be specialized to early strongly
predictively bounded by one to two days.

For each update transaction, the administrative computer
appends an item to the appropriate monthly log, depending
on the valid time of the transaction. Company policy restricts
transactions to no more than one month postactive, implying
that only two logs are ever active: the current monthly log and
the next month’s log. When the retroactive salary increase
(initially entered into LeeAnn’s workstation on March 26)
was processed by the administrative computer on April 2, a
compensating transaction resulted in the following item being
inserted into the next month’s log (May).

May’s monthly log: name salary vt tt
Eric $300 May 1 Apr 2

Subsequently, when Eric’s payroll check for April was issued
on April 28, the following item was inserted into the next
month’s log (May).

May’s monthly log: name salary vt tt
Eric $2300 May 1 Apr 28

Because retroactive changes are possible as far back as one
month (e.g., a transaction valid on April 1 being inserted into
April’s log on April 30), and postactive changes are possible
as far into the future as two months (e.g., a transaction valid
on April 30 being inserted into April’s log on March l), each
of the monthly logs can be specialized to strongly bounded
between minus one month and plus two months.

The state’s accounting office uploads the log of a month
shortly after that month ends. It then processes the items con-
tained in the log, performing internal audits. Errors detected
at that point may simply be corrected in the copy of the
monthly log held in the accounting department’s computer,
or they may necessitate compensating transactions, depending
on the specific error. Once the monthly log is cleaned up, it is
applied to the financial database on the fifteenth of the month,
a process termed “closing off the month” [62]. The financial
relation will contain the following items after both April and
May have been closed off.

Financial: name salary vt tt ttz
Eric $2000 Apr 1 May 15 Mar 29
Eric $300 May 1 Jun 15 Apr 2
Eric $2300 May 1 Jun 15 Apr 28

The transaction time, t t , when the entry is recorded in the
financial relation is obtained from tsg4, and the inherited
transaction time, ttz, is the transaction time of the original
entry recorded in the monthly log, supplied by tsgz.

Because updates to the financial relation occur only on
the fifteenth of each month, this relation may be specialized
to transaction time regular over one month. Also, tt always
follows ttz by 16 days (e.g., tt = May 15 and ttz = April
30) to 76 days (e.g., tt = June 15 and ttz = April l), and
so the interrelation between the primary and the secondary
transaction time may be characterized as delayed strongly
retroactively bounded with bound 16 to 76 days. As discussed
above in the context of the monthly logs, vt must be no more
than one month prior to ttz. Thus, the interrelation between vt
and ttz is restricted, as before, to strongly bounded between
minus one month and plus two months. These two relationships
imply that the interrelation between wt and tt may be described
as delayed strongly retroactively bounded with bounded I 6 to
46 days, with the former bound being exemplified by vt =
April 30 and tt = May 15, and with the latter bound being
exemplified by vt = May 1 and tt = June 15. Finally, because
each month is closed off during the next month, the relation
is globally nondecreasing and transaction time event regular
with an interval of one month.

The implications of the process of closing off on the
temporal semantics of accounting databases were first ex-
amined by Thompson [62]. In his terminology, the tt of
the payroll and financial relations is physical time (i.e., it is
tied to a TSG and concerns the storage of data), vt of the
payroll relation is logical time (i.e., it links the event with
the value of a TSG present when the event occurred), ut
of the financial relation is accounting time (i.e., it has been
validated by the closeout process), and ttz of the financial
relation and (equivalently) tt of the monthly log is engineering
time (i.e., it is always up-to-date, but not necessarily consistent,
because it has not yet been validated). This example illustrates
how the application of specialization and generalization can
accommodate Thompson’s conceptual taxonomy of discrete
clocks.

VII. QUERYING GENERALIZED TEMFWRAL RELATIONS
In previous sections, we explored how items may flow

from one temporal relation to another in a system contain-
ing multiple temporal relations. In particular, we showed
how it is possible for items to preserve primary transaction
time attributes from predecessor relations. Appending a new
transaction time attribute every time it is entered into a
relation results in generalized temporal relations with multiple
transaction time attributes. Preserving predecessor transaction
timestamp attributes allows one to query the predecessor
relation from the current relation.

The successor relation may be preferable to query for
several reasons. Because of security controls, the predecessor
relation may not be available, because it exists on a different
processor for which direct access is not possible, or because it
has since been deleted. Alternatively, the predecessor relation
may be available, but the successor relation may have indexes

970 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 6. DECEMBER 1994

defined on it or may be clustered in such a manner that access
to it for certain queries is more efficient. -

For example, the (centralized) personnel relation of the
application system discussed in the previous section inherits
the transaction and valid time attributes of the employee
relations local to the managers’ workstations. Therefore, it is
possible to query the employee relations from the personnel
relation. Members of the data processing group, having access
to only the administrative computer, can tell, say, when
LeeAnn’s secretary made a particular salary adjustment for
an employee on the manager workstation.

Even though the primary transaction time attribute (and, nat-
urally, the valid time attribute) from the predecessor temporal
relation is present in the successor temporal relation, not all of
the items present at a particular time in the predecessor relation
may be present in the successor relation at the same time,
for two reasons. First, there is likely to exist a transmission
delay between the two relations. The delay from when an
item is stored in the predecessor relation to when the item
is stored in the successor relation may be significant. In the
previous section, we saw that the delay between employee
relations and the personnel relation may be up to eight days.
Second, it may be that only a portion of the items entered
into the predecessor relation are transmitted to the successor
relation. For example, if LeeAnn has hired employees directly
(as opposed to employees hired departmentally, such as Eric),
the items recording salaries for those employees will never
appear in the personnel relation.

In consequence, despite the fact that we have the capabil-
ity of querying the predecessor relation remotely from the
successor relation, the set of queries that can be answered
correctly at the successor relation is a subset of the queries
that can be answered correctly when querying the predecessor
relation directly. For example, querying the personnel relation
on March 28 regarding the current salary of Eric present in
LeeAnn’s employee relation will give the (incorrect) answer
$2000. The same query applied directly to LeeAnn’s employee
relation will give the correct answer of $2300. However, the
query of what was Eric’s salary two weeks prior to March 28
will yield the correct result from either relation.

In addition to missing items, it may be that not all the
time-varying attributes of an item present in an predecessor
relation are included when items are transmitted to a successor
relation. For example, the employee relation could contain a
title attribute in addition to the salary attribute. For simplicity,
we do not consider the possibility of partial transmittal further.
We also do not consider here derived relations containing
inherited transaction timestamps.

Below we discuss an approach that avoids the problem
of the same query having differing (and thus inconsistent)
answers depending on where it is asked. The fundamentally
same approach was previously used to solve the similar
problem of identical queries having different results depending
on when they were asked [26]. This problem surfaces with
temporal and rollback relations when flexible physical deletion
is allowed.

In essence, the approach is to simply disallow all queries
from a successor relation on a predecessor relation if the result

of that query cannot be intensionally decided to be identical
to the result of the corresponding query when asked locally at
the predecessor relation.

For each ordered pair of a predecessor relation R, and a
successor relation R,, where R, has inherited the primary
transaction time attribute from R,, we define a transmission
filter, I(R,, R,). This filter intensionally expresses which
of the items currently present in R, is currently present in
R,. For example, if only departmental employees appear in
the employee relation, the filter between LeeAnn’s employee
relation and the personnel relation, stating that queries about
the most recent eight days are disallowed, may be expressed
as o t t ~ n o w - s d a y s . The transmission filters are defined by the
designer of the overall application system.

When a query Q on R, is asked at R,, the following takes
place.

1) The query Q is modified with the transmission filter ex-
pression, ‘T(R,, R,), and the modified query expression
MT(R,,R,) (Q) is obtained.

2) Q and M~-(R,,R,)(Q) are tested for equivalence.

a)
b)

If the test succeeds, then Q is processed.
If the test fails, then the user is notified that the
original query is disallowed and is presented with
MT(R,,R,)(Q). The user may submit this query
for processing, modify the query and submit the
result, or simply submit a completely new query.
In the latter two cases, the new query will go
through this cycle again.

For example, assume that the query rsalary(Ovt=hIarG

Att=Mar28Aname=Eric(employee)) is issued at the personnel
relation on April 2. The fact that this query cannot be answered
correctly from the personnel relation is discovered when the
modified query, with the filter restriction added, is seen to
be internally inconsistent, and thus is not equivalent to the
original query. (With now = April 2, the expression in the
transmission filter, now - 8 days evaluates to March 25, and
because March 25 < March 28, the query is inconsistent.)

In considering each way of interconnecting temporal re-
lations, we distinguish between three cases as outlined in
Fig. 10, where processors have been omitted for simplicity.
Only the interconnections between temporal relations where a
successor inherits the primary transaction time attribute of the
predecessor relation are of interest. In an application system,
the three connection types may be applied together repeatedly,
e.g., to specify a chain of relations, each inheriting data from
the previous one.

The first case is the linear transmission of items from one
relation (R,) to another relation (R,). Here all or just some
of the items form R, may be transmitted to R,.

The second case involves the distribution of items. Here
the items from one temporal relation may be distributed
among an arbitrary number of relations. Note that the same
item may be distributed to several relations and that the
transmission filters, each between the predecessor and an
individual successor relation, are thus independent. This kind
of interconnection is absent from the application system in
Section VI-B. If employees from several departments were

JENSEN AND SNODGRASS: TEMPORAL SPECIALIZATION AND GENERALIZATION 97 1

i

...

7
1

(b)

I I I I
r - - - - - - - - - - - -

...

(c)

Fig. 10.
items. (b) Distribution of items. (c) Collection of items.

Interconnections of temporal relations. (a) Linear transmission of

managed by LeeAnn, items from her employee relation could
be distributed among several personnel relations.

The third case is the collection of items where various
items from multiple predecessor relations are transmitted to a
single successor relation. With only the two previous cases,
the predecessor relations that may be queried from some
relations are all connected sequentially. When the third case
is included, the relations that may be queried from some
relation can be connected arbitrarily. In order to make the
collection of items possible, we restrict all the immediate
predecessor relations and successor relation to have the same
schemes, with the exception that the successor relation has
two additional attributes. First, the successor relation naturally
has its own primary transaction time attribute. Second, it
has an attribute associated with the transaction time attribute
inherited from the set of predecessor relations that records
from which predecessor items are received. The information
of this second attribute, which partitions the successor relation
with respect to the predecessor relations, is necessary in
order to be able to query the predecessor relations from
the successor relation. (This attribute may in fact be one of
the attributes from the predecessor relations.) This kind of
interconnection exists between the employee relations and the
personnel relation. Here each manager records information
about her own employees. Then the information recorded
locally by each manager is collected in the central personnel
relation.

Note that sources may take the role of originating temporal
relations in the discussion above. Also note that buffers are ir-
relevant for the discussion above-buffers cannot be queried,
and they only add additional delays and make the transmission
filters between temporal relations more restrictive. Finally,
note that in the above description, situations where a relation
receives items that the relation itself transmitted are implicitly
possible. For simplicity, we do not discuss such cycle.

In summary, three connection types are employed in spec-
ifying the system topology. For each inherited timestamp

attribute, a transmission filter is specified that allows the
database system to ensure that queries always yield correct
results.

VIII. IMPLICATIONS FOR QUERY 0F"'IMIzATION AND

EXECUTION
In this section, we consider the performance implications for

processing queries over specialized temporal relations. Specif-
ically, we indicate how query processing algorithms and in-
dexing techniques designed for I-D time-varying data may be
naturally extended to apply to specialized temporal (i.e., 2-D,
valid and transaction time) relations as well. This represents
a simple but significant contribution to the largely unexplored
topic of efficient support of temporal data.

We proceed in two steps. First, we describe the general idea
of applying 1-D approaches to 2-D data; second, we briefly
review related research and show how the general idea applies.
We do not attempt to give a detailed analysis of the application
of 1 -D approaches to specialized temporal relations; that
would require us to select specific stored representations,
indexes, and processing strategies for temporal data, which
is beyond the scope of this paper. Instead, we discuss query
optimization only to show that the taxonomy may be used to
take known techniques that were heretofore limited to either
rollback or historical databases (i.e., one time dimension) and
apply them to specialized relations containing multiple time
dimensions. New research efforts aimed directly toward the
efficient support of temporal relations may also be designed to
exploit the semantics of specialized temporal relations, with
resulting performance gains.

A . Exploiting Specializations

The general idea can be stated as follows. In order to apply
existing techniques previously used to improve the perfor-
mance of queries on 1-D data, we use the specific interrelation
between valid and transaction timestamps, guaranteed by the
type of a specialized temporal relation, to simply disregard one
time dimension and use only the other as far as physical or-
ganization is concemed. Note that both the existing techniques
for transaction time alone and the existing techniques for valid
time alone are applicable. Because items resulting from update
activity arrive, by definition, in transaction timestamp order at
temporal relations, we find it natural to use the transaction
time dimension and ignore the valid time dimension.

This approach applies, with some variations, to all spe-
cialized temporal relations. The application of the approach
to specialized temporal relations toward the bottom of a
specialization/generalization structure (see Figs. 2 to 6), being
closer to degenerate relations that never require more than
one timestamp, will be more successful than the application
to relations higher in the specialization/generalization struc-
ture. Rather than consider each type of specialized temporal
relation in tum, we confine the presentation to consider only
strongly retroactively bounded relations as an example. Also,
we assume that items of a relation are physically clustered
on transaction time on a per-relation basis (e.g., [29J) or
on a per-object surrogate basis (e.g., [20], [U]). These are

912 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6. NO. 6, DECEMBER 1994

straightforward representations, particularly if write-once stor-
age media are used. Assuming physical clustering and strongly
retroactively bounded temporal data, the following important
property holds: All items with valid timestamps equal to some
value, t,, may be found within a limited number of items after
the item with transaction time value equal to t,, if it exists, and
otherwise after the item with the largest transaction timestamp
less than t,. The limit on the number of items depends on
the particular retroactive bound and the intensity of update
activity for the relation.

The property of locality may have significant performance
implications for some historical queries. From potentially hav-
ing to search an entire ever-growing temporal relation, search
may be confined to a restricted region. Indeed, the storage
structure chosen for a temporal relation may be strongly
dependent on the specialized type of that relation. Particularly,
if bounds are satisfactorily tight, performance enhancing strate-
gies used for 1-D data (valid or transaction time) may prove
applicable. Order preserving physical organizations for 1 -D
data seem especially promising, because order preservation
in the transaction time dimension carries over the valid time
dimension and results in items that are nearly clustered with
respect to valid time.

B. Application to Previous Proposals

The issue of efficient temporal query processing is largely
unexplored. Although much research is still needed, the effi-
cient support of queries on data with a single time dimension of
various kinds has been addressed to some extent. As indicated
above, it appears that this research may be extended naturally
to include the efficient support of specialized temporal data.
Below we briefly review some of this research.

First, we consider two approaches to efficiently support
various joints on 1-D temporal data. h u n g and Muntz have
proposed a stream processing approach to temporal (semi-)
joins [35]. In this approach, the input to, and the output from,
stream processors consists of a set of streams of items. A
processor has a local state, and it is allowed to see only a
single item from each stream at a time. For example, a join
processor has two input streams and one output stream. When
constructing a stream processor for computing a function such
as a join, it is often necessary to make trade-offs between
possible sort orderings of input and output streams, the size
and contents of the local processor state, and the number of
passes needed over the input streams. With this approach,
the effects of different sort orderings on the efficiency and
the size of the local state were considered for one temporal
join (and as special cases, two semijoins). A stream join
processor that assumes a time-ordered sequence of items may
be converted into a processor that will accept a transaction
time ordered stream (nearly ordered in valid time), and yet
efficiently computes a valid time temporal join. This may be
done by simply adding two identical prestream processors
that each use a buffer to convert nearly ordered data into
totally ordered data (an integration into a single processor may
improve performance). The buffer sizes correspond to the sizes
of the regions mentioned in the general discussion above.

A more traditional approach to the processing of 1-D
temporal joins is chosen in most other work in temporal
query optimization [191-[21]. Most notably, a temporal event-
join consisting of three time-oriented joins is considered [20].
In this work, the proper ordering of argument relations has
again been shown to significantly impact the efficiency with
which joins can be performed. As above, this research may
be applied to specialized temporal relations at the expense of
some added complexity to the join algorithms. Thus, additional
control structure and bookkeeping is necessary to process
nearly ordered data, as opposed to the currently totally ordered
data. In particular, results obtained for append-only databases
are highly relevant for specialized temporal relations.

Next we briefly survey recent contributions to the problem
of indexing various kinds of 1-D temporal data. The reader
should consult the references below for pointers to other work.

A number of research contributions aimed at supporting
time-varying data attempt to ensure that storing previously
currenthalid data as well as current data should not adversely
affect to a significant degree the performance of queries
accessing only current data. The time-split B-tree [38], [44] is
a recent contribution based on this philosophy. In addition to
the key splits of the B-tree, this index structure allows for so-
called time splits. The basic idea of the time-split is to migrate
data to a separate and ever-growing historical database if the
data resides in the current database (where it was initially
inserted), and if it also has timestamps that are smaller than
the split time. We believe that the time-split mechanism may
be modified to make this indexing technique suitable for some
types of specialized temporal data.

Also based on the above-mentioned philosophy, Kolovson
and Stonebraker generalize R-trees to span both magnetic and
optical disk media, thus providing new intermediates between
R-trees residing on only a single medium [33]. This is relevant
when the bulk of temporal data do not fit on magnetic disk
and must be migrated to optical disk [43]. They also introduce
tactics aimed at improving observed deficiencies of existing
indexing techniques for historical data (e.g., R-trees) [34].
This research may likely be extended to deal successfully with
specialized temporal data.

The Time Index is an indexing technique based on the B-
tree [14], [16]. It uses endpoints of intervals of validity for
the indexing of items. How to extend this technique to cover
specialized temporal data is an interesting topic.

Transaction time data may also be stored in backlogs
clustered on the time dimension [28], [29]. On top of the
backlogs, indexed and selectively cached views, together with
differential (incremental and decremental) computation tech-
niques, may be employed, together with standard query pro-
cessing technique. The specialized temporal relations with
close valid and transaction times may be easily integrated
into, and efficiently supported by, this query processing and
optimization framework.

In summary, it appears that many implementation tech-
niques originally proposed for rollback or historical database
and supporting only one kind of time may be adapted to also
apply to specialized form of temporal relations supporting both
kinds of time.

._ -

JENSEN AND SNODGRASS: TEMPORAL SPECIALIZATION AND GENERALIZATION 973

Ix. CONCLUSION AND FUTURE RESEARCH

A temporal relation has two database system-interpreted
time attributes, transaction time and valid time. A transaction
timestamp is a simple value indicating when a fact is stored in
the temporal relation. A valid timestamp records the validity
of a fact, and it may be a simple value (event relation)
or an ordered pair of simple values (interval relation). In
general, these timestamps are independent, meaning that facts
may be associated with a point or a pair of points in an
unrestricted 2-D space. In many situations, however, the
time points of facts are restricted to limited regions of this
space, resulting in specialized temporal relations. Examples
include process monitoring, satellite surveillance of crops
or weather, accounting applications, and real-time databases.
The restricted interrelations of timestamps constitute important
semantics of temporal relation schemas.

In this paper, we considered the specialized semantics of the
time attributes in generalized temporal relations. These include
the standard temporal relation dimensions of valid time and
(primary) transaction time, inherited transaction timestamps,
and TSG-generated timestamps.

We presented an extensive taxonomy of temporal spe-
cializations, some restricting the stamps of individual facts,
and others restricting the stamps of an interfact basis. The
taxonomy provides a better understanding of the nature of
individual temporal relations and of how various temporal
data models compare. Additionally, a database system may be
extended to exploit such time-related semantics of temporal
relations if they are recorded in the schema. In particular,
we showed that storage and indexing structures for 1-D
temporal data may be naturally extended to efficiently support
specialized temporal relations. The additional semantics may
be used also for query optimization purposes, resulting in more
efficient query processing.

We extended to 2-D space associated with facts to having
n dimensions, resulting in generalized temporal relations.
This natural extension resulted from considering temporal
relations as parts of larger application systems, where facts
were allowed to flow from relation to relation and thus
accumulate timestamps. We presented a set of components that
may be used to specify the topology of application systems,
and we discussed the ability to query a predecessor relation
via a successor relation. By means of examples, we illustrated
how application systems are described and how specialization
may be applied to any of the time dimensions in generalized
temporal relations.

Further work is indicated in two areas. As we have shown
(Section VIII), specialized temporal relations present an op-
portunity to optimize temporal queries; more work is needed
to exploit specializations stated by the database designer. Our
contention is that most previous work in this area is relevant;
still, the details need to be worked out.

An overall approach to designing temporal databases is still
needed. This paper has considered only half of the problem of
designing temporal relations: determining the characteristics
of the timestamp attributes that concem entire items. Just
as important are the characteristics of the individual time-

varying attributes. A fully articulated design methodology for
temporal relations must address both timestamp attributes and
time-varying attributes.

ACKNOWLEDGMENT

The topic of temporal specialization was introduced during
discussions between the second author and A. Segev, whose
comments encouraged further exploration of what was then
termed “coupled relations.” M. Stonebraker’s use of valid
time examples to illustrate rollback relations in POSTGRES
(which record only transaction time) implied that this system
supports temporal relations; the research reported here into this
implication shows that in a real sense it is true. P. Thompson’s
dissertation work inspired investigation of the system topology
and inherited transaction times, which led us to temporal
generalization. Comments on earlier drafts of this paper by L.
Baekgaard, C . Dyreson, S. Hsu, L. Mark, and M. So0 helped
improve the presentation.

REFERENCES

R. K. Abbott and H. Garcia-Molina, “Scheduling real-time transactions:
A performance evaluation,” ACM Trans. Database Syst., vol. 17, no. 3,
pp. 513-560, Sept. 1992.
M. Adiba, N. B. Quang, and J. Palazzo de Oliveira, “Time concept in
generalized data base,” in ACM 13th Ann. Comput. Sei. Conf., 1985, pp.
214-223.
M. Adiba and N. B. Quang, “Historical multimedia databases,” in Proc.
12th Int. Conf. Very Large Data Bases, 1986, pp. 63-70.
-, “Dynamic database snapshots, albums, and movies,” in Proc.
Conf. Temporal Aspects in lnform. Syst., 1987, pp. 207-225.
M. Adiba, “Derived relations: A unified mechanism for views, snap-
shots, and distributed data,” in Proc. 7th Inr. Conf. Very Large Data
Bases, 1981, pp. 293-305.
M. E. Adiba and B. G. Lindsay, “Database snapshots,” in Proc. 6th Int.
Conf. Very Large Databases, 1980, pp. 86-91.
J. F. Allen, “Maintaining knowledge about temporal intervals,’’ Com-
mun. ACM, vol. 26, pp. 832-843, Nov. 1983.
J. Ben-Zvi, “The time relational model,” Ph.D. dissertation, Comput.
Sci. Dept., UCLA, USA, 1982.
E. F. Codd, “A relational model of data for large shared data banks,”
Commun. ACM, vol. 13, no. 6, pp. 377-387, June 1970.
C. J. Data, An Introduction to Database Systems, Volume 11. Reading,
MA: Addison-Wesley, 1985.
-, An Introduction to Database Systems, Volume I , 5th ed. Read-
ing, MA: Addison-Wesley, 1990.
B. Dubrovsky, “Universal data access for time series analysis,” PIXEL,
vol. 2, pp. 4 2 4 4 , Mar./Apr. 1991.
C. E. Dyreson and R. T. Snodgrass, “Timestamp semantics and repre-
sentation,” Inform. Sysr., vol. 18, no. 3, pp. 143-166, 1993.
R. Elmasri, Y.-J. Kim, and G. T. J. Wuu, “Efficient implementation
techniques for the time index,” in Proc. 7th lnr. Conf. Data Eng., 1991,

R. Elmasri and S.B. Navathe, Fundamentals of Database Systems.
Redwood City, CA: Benjamin/Cummings, 1989.
R. Elmasri, G.T.J. Wuu, and Y.-J. Kim, “The time index: An access
structure for temporal data,” in Proc. 16th Int. Conf. Very Large Data
Bases, 1990, pp. 1-12.
S . K. Gadia, “A homogeneous relational model and query languages for
temporal databases,” ACM Trans. Database Syst., vol. 13, no. 4, pp.
418448, Dec. 1988.
S.K. Gadia and C.-S. Yeung, “A generalized model for a relational
temporal database,” in Proc. ACM SIGMOD Conf., 1988, pp. 251-259.
H. Gunadhi and A. Segev, “A framework for query optimization in
temporal databases,” in 5th Int. Conf. Statistical and Scientifrc Database
Mgmt. Syst., 1989.
-, “Event-joint optimization in temporal relational databases,” in
Proc. 15th Int. Conf. Very Large Data Bases, 1989, pp. 205-215.
A. Segev, H. Gunadhi, R. Chandra, and J. G . Shantikumar, “Selectivity
estimation in temporal manipulation,” Inform. Sci., vol. 74, no. 1-2,
Oct. 1993.

pp. 102-111.

974 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 6, DECEMBER 1994

[22] P. Hall, J. Owlett, and S . J. P. Todd, “Relations and entities,” in G. M. Ni-
jssen, Ed., Modeling in Data Base Management Systems. Amsterdam,
Netherlands: North-Holland, 1976, pp. 201-220.

[23] M. Hammer and D. McLeod, “Database Description with SDM: A
semantics Database Model,” ACM Trans. Database Sysr., vol. 6, no.
3, pp. 351-386, Sept. 1981.

[24] J. P. Held and J. V. Carlis, “The applicative data model,” Inform. Sci.,

[25] C. S. Jensen, “Toward the realization of transaction time database
systems,” Ph.D. dissertation, CS-TR-2568, UMIACS-TR-90- 144, Dept.
Comput. Sci., University of Maryland, College Park, MD, USA, 1990.

[26] C.S. Jensen and L. Mark, “A framework for vacuuming temporal
databases,” Tech. Rep. CS-TR-25 16, UMIACS-TR-90-105, Dept. Com-
put. Sci., Univ. of Maryland, College Park, MD, USA, 1990.

[27] -, “Queries on change in an extended relational model,” IEEE
Trans. Knowl. Dura Eng., vol. 4, no. 2, pp. 192-200, Dec. 1991.

[28] C. S. Jensen, L. Mark, and N. Roussopoulos, “Incremental implementa-
tion model for relational databases with transaction time,” IEEE Trans.
Knowl. Data Eng., vol. 3, no. 3, pp. 461473, Sept. 1991.

[29] C. S . Jensen, L. Mark, N. Roussopoulos, and T. Sellis, “Using caching,
cache indexing, and differential techniques to efficiently support trans-
action time,” VLDB J . , vol. 1, no. 2, pp. 75-1 11, Jan. 1992.

[30] C. S . Jensen and R. T. Snodgrass, “Temporal specialization,” in F.
Golshani, Ed., Proc. Int. Conf. Data Eng., 1992, pp. 59&603.

[31] S . Jones, P. Mason, and R. Stamper, “Legol 2.0: A relational speci-
fication language for complex rules,” Inform. Syst., vol. 4, no. 4, pp.

[32] K. A. Kimball, “The DATA system,” M.S. thesis, Univ. of Pennsylvania,
USA, 1978.

[33] -, “Indexing techniques for historical databases,” in Proc. 5rh Inr.
Conf. Data Eng., 1989, pp. 127-137.

[34] C.P. Kolovson and M. Stonebraker, “Segment indexes: Dynamic in-
dexing techniques for multi-dimensional interval data,” in Proc. ACM
SIGMOD Conf., 1991, pp. 138-147.

[35] T.Y.C. Leung and R.R. Muntz, “Query processing for temporal
databases,” in Proc. 6th Int. Conf. Data Eng., 1990, pp. 200-208.

[36] B. Lindsay, L. H a s , C. Mohan, H. Pirahesh, and P. Wilms, “A snapshot
differential refresh algorithm,” in Proc. ACM SIGMOD Conf., 1986, pp.
53-60.

[37] W. Litwin, L. Mark, and N. Roussopoulos, “Interoperability of multiple
autonomous databases,” ACM Computing Surv., vol. 22, no. 3, pp.
267-293, Sept. 1990.

[38] D. Lomet and B. J. Salzberg, “The performance of a multiversion access
method,” in Proc. ACM SIGMOD Conf., 1990, pp. 353-363.

[39] N. Lorentzos and R. Johnson, “Extending relational algebra to ma-
nipulate temporal data,” Inform. Syst., vol. 13, no. l , pp. 289-296,
1988.

[40] S . B. Navathe and R. Ahmed, “A temporal relational model and a query
language,” Inform. Sci., vol. 49, pp. 147-175, Oct. 1989.

[41] K. Ramamritham, “Real-time databases,” Int. J . Disrrib. Parallel
Databases, vol. 1, no. 2, pp. 199-226, 1993.

[42] D. Rotem and A. Segev, “Physical organization of temporal data,” in
Proc. 3rd Int. Conf. Data Eng., 1987, pp. 547-553.

[43] L.A. Rowe and M.R. Stonebraker, Eds., “The POSTGRES papers,”
Tech. Rep. UCBERL M86/85, Electron. Res. Lab., College of Eng.,

1989, pp. 249-283.

293-305, NOV. 1979.

Univ. of Califomia, Berkeley, CA, USA, June 1987.
B. J. Salzberg and D. Lomet, “Access methods for multiversion data,”
in Proc. ACM SIGMOD Conf., 1989, pp. 315-324.
N. L. Sarda, “Extensions to SQL for historical databases,” IEEE Trans.
Knowl. Data Eng., vol. 2, pp. 220-230, June 1990.
B.-M. Schueler, “Update reconsidered,” in Proc. IFIP Working Confer-
ence on Modeling in Data Base Mgmt. Syst., 1977, pp. 149-164.
A. Segev and A Shoshani, “Modeling temporal semantics,” in M.
Leonard, C. Rolland, F. Bodart, Eds., Temporal Aspects in Information
Systems.
-, “The representation of a temporal data model in the relational
environment,” In Proceeding of the 4th International Conference on
Statistical and Scienrijic Database Management, 1988.
-, “Logical modeling of temporal data,” in Proc. ACM SIGMOD
Conf.. 1987. DD. 454-466.

Amsterdam, Netherlands: North-Holland, 1988, pp. 47-58.

[52] J. M. Smith and D. C. P. Smith, “Database abstractions: Aggregation and
generalization,” ACM Trans. Database Syst., vol. 2, no. 2, pp. 105-133,
June 1977.

[53] R. T. Snodgrass, “The Temporal Query Language TQuel,” ACM Trans.
Database Syst., vol. 12, no. 2, pp. 247-298, June 1987.

[54] R. T. Snodgrass and I. Ahn, “A taxonomy of time in databases,” in Proc.
ACM SIGMOD Conf.., 1985, pp. 236-246.

[55] __, “Temporal databases,” IEEE Comput., vol. 19, no. 9, pp. 3 5 4 2 ,
Sept. 1986.

[56] M. So0 and R. T. Snodgrass, “Multiple calendar support for conventional
database management systems,” Tech. Rep. 92-7, Comput. Sci. Dept.,
Univ. of Arizona, Feb. 1992.

[57] M. Soo, R.T. Snodgrass, C. Dyreson, C.S. Jensen, and N. Kline,
“Architectural extensions to support multiple calendars,” TempIS Tech.
Rep. 32, Comput. Sci. Dept., Univ. of Arizona, USA, May 1992.

[58] M. Stonebraker and L.A. Rowe, “The design of POSTGRES,” in C.
Zaniolo, Ed., Proc. ACM SIGMOD Conf., 1986, pp. 340-355.

[59] M. Stonebraker, L. A. Rowe, and M. Harohama, “The implementation
of POSTGRES,” IEEE Trans. Knowl. Data Eng., vol. 2, pp. 125-142,
Mar. 1990.

[60] M. Stonebraker, “The design of the POSTGRES storage system,” in
Proc. 13th Int. Con$ Very Large Data Bases, 1987, pp. 289-300.

[61] G. Thomas, G.R. Thompson, C.-W. Chung, E. Barkmeyer, F. Carter,
M. Templeton, S . Fox, and B. Hartman, “Heterogeneous distributed
database systems for production use,’’ ACM Computing Surv., vol. 22,
no. 3, pp. 237-266, Sept. 1990.

[62] P.M. Thompson, “A temporal data model based on accounting prin-
ciples,” Ph.D. dissertation, Dept. Comput. Sci., Univ. of Calgary, AB,
Canada. Mar. 1991.

Associate Professor, also
and 1994, he visited the

Christian S. Jensen (S’90-M’91) received the B.S.
degree in mathematics and the M.S. and Ph.D. de-
grees in computer science from Aalborg University,
Denmark, in 1985, 1988, and 1991, respectively.

For 2 112 years, starting Fall 1988, he was
part of the Database Systems Group in the De-
partment of Computer Science at the University
of Maryland, College Park. In December 1990, he
joined the faculty of the Department of Mathematics
and Computer Science at Aalborg University as an
Assistant Professor. In February 1994, he became an

, at Aalborg University. During each of 1991, 1992,
Department of Computer Science at the University

of Arizona for six months. His research interests include database systems
architecture, query processing and optimization, temporal data models and
query languages, object orientation, database design, data modeling, and
incomplete information.

Dr. Christian has served on the program committees for a number of
conferences, including VLDB, ACM SIGMOD, and IEEE Data Engineering
and serves regularly as a reviewer for major database joumals. He is the
general chair of the 1995 Intemational Workshop on Temporal Databases.

Richard T. Snodgrass (S’79-M’81SM’87) re-
ceived the Ph.D. from Camegie Mellon University
in 1982, and joined the University of Arizona in
1989.

His research interests include temporal databases
and programming environments.

Dr. Snodgrass directed the design and implemen-
tation of the Scorpion Meta Software Development
Environment, described in his book, The Interface
Description Language: Definition and Use (Com-
puter Science Press). He is an Associate Editor of

[50] A. 6 Sheth ;id J. A. Larson, “Federated database systems for man-
aging distributed, heterogeneous, and autonomous databases,” ACM
Computing Surv., vol. 22, no. 3, pp. 183-236, Sept. 1990.

[511 A. Shoshani and K. Kawagoe, “Temporal data management,” in Proc.
12th Int. Conf. Very Large Data Bases, 1986, pp. 79-88.

the ACM Transactions onDatabase Systems and is on the editorial board of
the International Journal of Computer and Software Engineering. He chaired
the program committee for the 1994 SIGMOD Conference. He is co-editing
a special section of the IEEE TRANSACTIONS ON KNOWLEDGE AND DATA
ENGINEERING on Temporal and Real-Time Databases.

