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Monitoring is an essential part of many program development tools, and plays a central role in 
debugging, optimization, status reporting, and reconfiguration. Traditional monitoring techniques 
are inadequate when monitoring complex systems such as multiprocessors or distributed systems. A 
new approach is described in which a historical database forms the conceptual basis for the 
information processed by the monitor. This approach permits advances in specifying the low-level 
data collection, specifying the analysis of the collected data, performing the analysis, and displaying 
the results. Two prototype implementations demonstrate the feasibility of the approach. 
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1. INTRODUCTION 

Monitoring is the extraction of dynamic information concerning a computational 
process, as that process executes. This definition encompasses aspects of obser- 
vation, measurement, and testing.* Much has been written about monitoring 
uniprocessor systems (cf., the bibliographies [2] and [54]), and the general 

i There are at least two other definitions of monitor that should be mentioned: a synonym for 
operating system, and an arbiter of access to a data structure in order to ensure specified invariants, 
usually relating to synchronization [27]. Both definitions emphasize the control, rather than the 
obseruationul aspects of monitoring. Monitoring is closely associated with, but strictly separate from, 
activities that change the course of the computational activity. The term monitor, as used in this 
paper, is the (usually software) agent performing the monitoring. 
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techniques of tracing and sampling are well established. These approaches do 
not scale well to m,onitoring complex systems, which include large uniprocessors, 
tightly coupled multiprocessor systems, and loosely coupled local and long-haul 
networks. Two distinctions relevant to monitoring are that complex systems 
often exhibit a lack of central control and that the quantitative jump in complex 
systems in the number of system components (processors, processes, memory, 
addressing domains, etc.) leads to a qualitative difference in the sophistication 
required of the monitor. These two aspects conspire to make monitoring a 
complex system a difficult (and thus interesting) task. 

In this paper, we argue that a historical database, an extension of a conventional 
relational database, is an appropriate formalization of the information processed 
by the monitor of a complex system. This approach induces changes in the 
ordering of the steps performed during monitoring, as well as changes within the 
steps themselves. In Section 2 we examine the sequential process of traditional 
monitoring, primarily to contrast it with the approach espoused here. Sections 
3-8 propose the new approach, exposing the many opportunities such an approach 
presents. Section 9 briefly examines two implementations, and the last two 
sections offer conclusions and directions for future work. 

2. APPROACH 

Monitoring is a fundamental component of many computing activities: 

-One use of monitoring is to facilitate the debugging of complex programs. 

-Ensuring that tools make efficient use of limited computing resources is a 
second use. 

-Monitoring can be used to query a computing system, not for performance 
measures, but merely for status information. 

-Finally, monitoring information may also be used internally by application 
programs for load balancing and graceful degradation in the presence of 
hardware and software failures. 

Debugging proceeds in five stages [50]: (1) o b serve the behavior of a computer 
program; (2) compare this behavior with the desired behavior; (3) analyze the 
differences; (4) devise changes to the program to make its behavior conform more 
closely to the desired behavior; and (5) alter the program in accordance with 
these changes. Monitoring is concerned with the first and, to some extent, the 
second and third stages in this process. Monitoring is a first step in understanding 
a computational process, for it provides an indication of what happened, thus 
serving as a prerequisite to ascertaining why it happened. 

Performance tuning also requires monitoring information. Ideally, optimiza- 
tion of resources would be done analytically, but in general a priori determination 
of run-time efficiency is impossible. Thus, it is necessary to tune an application 
program once it is implemented. Tuning requires feedback on the program’s 
efficiency, which is determined from measurements on the program while it is 
running. 

Monitoring can also provide status information, such as how far a computation 
has progressed, who is logged on the system (the system status command of most 
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time-sharing systems), the state of certain files (the catalog or directory com- 
mands), or the nature of hardware and software failures. 

And, finally, monitoring is required for dynamic reconfiguration. For example, 
consider a program that varies the number of processes dedicated to a particular 
function based on the request rate for that function. Information concerning the 
hardware utilization and the number of outstanding requests could be used 
by the program to determine whether to start up more processes to handle 
the current demand (e.g., if the utilization is low and the request rate high) [52, 
55, 731. Monitoring information is also valuable for programs that must be reli- 
able; the fact that a processor (executing processes belonging to a program) has 
failed, for example, is important to the program if it is to recover from such 
failures. 

Monitoring is thus an essential function. In one study of program development 
tools [31], a quarter of these tools were highly dependent on monitoring infor- 
mation, including those under the categories of tracing, tuning, timing, and 
resource allocation. 

A few definitions are useful. A subject system is the software system being 
monitored, usually the operating system or a user program. A sensor is a section 
of code within the subject system, which transfers to the monitor information 
concerning an event or state within the system. If the sensor is traced, then a 
data packet is transferred to the monitor each time a particular event occurs. If 
the sensor is sampled, then a data packet is transferred each time the monitor 
requests the sensor to do so. This data packet may be as simple as a bit that is 
complemented when the event occurs, or as complex as a long record containing 
the contents of system queues. The removal of irrelevant data packets before 
they are completely processed is termed filtering. 

Implicit in most discussions on monitoring is an eight-step sequential process: 

Step 1: Sensor Configuration 
This step involves deciding what information each sensor will record and where 
the sensor will be located. 

Step 2: Sensor Installation 
Sensors must be coded and placed in the correct location in the subject system. 
Provision must be made for temporary and permanent storage of the collected 
data. 

Step 3: Enabling Sensors 
Some sensors are permanently enabled, storing monitoring data whenever 
executed, while others may be individually or collectively enabled, usually by 
directives from the user. 

Step 4: Data Generation 
The subject program is executed, and the collected data are stored on disk or 
magnetic tape. Generally the user has little control of the monitoring at this 
point. 

Step 5: Analysis Specification 
In most systems the user is given a menu of supported analyses; sometimes a 
simple command language is available. 
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Step 6: Display Specification 
Either only one display format is available, or the user is given a menu of 
formats, ranging from a list of data packets printed in a readable form to 
canned reports to simple graphics (graphs or histograms). 

Step 7: Data Analysis 
Data analysis usually occurs in batch mode long after the data have been 
collected. 

Step 8: Display Generation 
Usually this step occurs immediately after data analysis, although a few 
packages allow the analyzed data to be displayed at a later time. 

While most monitoring systems follow the sequence of phases just listed, in 
the precise order given (e.g., [43,48,70]), there is a variety of alternative orderings 
within each phase. Many systems do not differentiate between sensor configu- 
ration and sensor installation. In some systems, sensors are always enabled, so 
that the enabling sensors step occurs in the second step when the sensors are 
installed (e.g., [7, 741). Some systems support only one display format, effectively 
combining the analysis and display specification steps (e.g., [21, 44, 711); other 
systems allow the display to be specified after the data have been analyzed (e.g., 
[12, 14,341). In some systems, users are even required to write their own analysis 
and display code (e.g., [42, 48, 491). 

When considering the monitoring of a complex system, an initial strategy 
would extend each step in obvious ways. Such an approach is problematic at 
every step, due to the logical and physical distribution of the monitor and the 
subject program(s). Instead, we advocate a more comprehensive examination of 
the basic function of a monitor. In an abstract sense, monitoring is concerned 
with retrieving information and presenting this information in a derived form to 
the user. Hence, the monitor is fundamentally an information processing agent, 
with the information describing time-varying relationships between entities 
involved in the computation. 

A great deal of research has considered effective ways to process information. 
One of the results of this research has been the relational model [ 111. Conventional 
databases are static, in that they represent the state of an enterprise at a single 
moment of time. Although their contents continue to change as new information 
is added, these changes are viewed as modifications to the state, with the old, 
out-of-date data being deleted from the database. The current contents of the 
database may be viewed as a snapshot of the enterprise at a particular moment 
of time. 

For relational databases to be relevant to monitoring, there must be a means 
of recording facts that are (were) true only for a certain period of time. In the 
database area, attention has recently been focused on precisely this issue [65]. 
Three types of databases have emerged that encode the notion of time: rollback 
databases, which record the history of database activities; historical databases, 
which record the history of the real world; and temporal databases, which 
incorporate both aspects [67]. The historical database is the most appropriate 
model of the dynamic state of computation. Historical databases require more 
sophisticated query languages than conventional databases; TQuel (Temporal 
QUEry Language) is one that supports historical queries [66]. Examples of TQuel 
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queries will be given in a later section, after a new approach to monitoring is 
presented. 

The central thesis of this paper is that historical databases are an appropriate 
formalization of the information processed by the monitor. The primary benefits 
include a simple, consistent structure for the information, the use of powerful 
declarative query languages, and the availability of a catalog of optimizations to 
be used when interpreting queries expressed in these languages. In this approach, 
the user is presented with the conceptual view that the dynamic behavior of the 
monitored system is available as a collection of historical relations, each associ- 
ated with a sensor in the subject system. In making historical queries on this 
conceptual database, the user is in fact specifying in a nonprocedural fashion the 
sensors to be enabled, the analysis to be carried out, and even the graphical 
presentation of the derived data. 

Note that we are not proposing to actually represent the data as relations in a 
database. Instead, we will show that a historical database provides a convenient 
and powerful fiction that guides the processing but does not constrain the 
representation. In fact, in most cases the relations will never actually collectively 
exist as data stored either in main memory or on secondary storage. 

Such an approach changes the ordering and the character of the traditional 
monitoring steps described earlier: 

Step 1: Sensor Configuration 
This step is still performed by the user: the result is a specification of the data 
to be collected and the placement of the sensors. Conceptually, each sensor 
declared in this manner defines a historical relation available for later use in 
defining other, derived relations. The relations directly associated with sensors 
are termed primitive relations, as contrasted with derived relations, which are 
not associated directly with sensors. The specification of the primitive relations 
identify the information available to the monitor. 

Step 2: Sensor Installation 
This step occurs automatically: the sensor is produced by the monitor from 
the specifications. Relevant aspects of the sensor are communicated to the 
components of the monitor that need to know this information. The sensor 
code handles all the necessary interaction with the monitor, including enabling 
and buffering, and may be customized to the task it is to accomplish and the 
environment in which it is to execute. Here we replace a manual step with an 
automatic one. 

Step 3: Analysis Specification 
In this step, the user provides one or more historical queries, defined on the 
primitive relations specified above. 

Step 4: Display Specification 
This step occurs concurrently with analysis specification. By associating 
entities and relationships with graphical icons, sophisticated illustrations of 
dynamic behavior can be generated by the monitor. 

Step 5: Execution 
This step-comprised of enabling the sensors, generating the data, analyzing 
the data, and displaying the results-occurs automatically once the queries 
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Sensor Configuration (m) t Sensor Condguration (m) 

Sensor Installation (m) + Sensor Installation 

Enabling Sensors (m) 

Data Generation 

Analysis Specification (m) Analysis Specitlcation (m) 

Display Specification (m) 

Data Analysis 

Information Display % 

Display Specification (m) 

Execution 

Fig. 1. Steps of the new approach to monitoring. 

have been specified. The monitor first analyzes the query to determine precisely 
the sensors that must be enabled to collect the requisite low-level information 
needed to satisfy the query, thereby guaranteeing that extraneous information 
is not collected. All the techniques previously developed for data collection are 
applicable. The monitor can also perform optimizations on the query, mapping 
it into a different query with an identical semantics but improved performance. 
Display generation can also be made more efficient by capitalizing on the fact 
that only a small portion of the state changes during each transition and by 
utilizing incremental display algorithms. Four traditional steps, including one 
that was previously a manual one (enabling the sensors) are replaced with this 
single automatic step. 

The traditional approach is compared with the new approach in Figure 1. The 
major change is that the sensors are enabled and the data generated after the 
analysis specification step, allowing the sensors to be enabled automatically based 
on information from the query. A second change is that some aspects of sensor 
installation are automated. “(m)” indicates the step is a manual one. 

As with the traditional approach, variations are possible. If dynamic sensor 
installation is supported (say, through the use of breakpoints), this step might 
be delayed until the execution step. By storing one or more relations in secondary 
storage, additional iterations of the analysis specification and execution steps 
(without the enabling and data-generation portions) are possible. Finally, defaults 
supported by the monitor may delay some aspects of some of the steps (e.g., 
display specification), until the execution step when they can be performed 
automatically. 

The next six sections discuss this new approach in more detail. Section 3 
examines how sensors may be configured by the user. An example, used through- 
out the remainder of the paper, is introduced in Section 4. Section 5 deals briefly 
with how the sensor configuration information is used by the monitor to install 
the sensors. Section 6 introduces TQuel, the query language used to specify the 
monitoring actions, and Section 7 shows how the display can be specified. 
The monitoring actions of analyzing the query, generating the low-level data, 
performing the analysis, and displaying the data are discussed in Section 8. 
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3. THE SENSOR CONFIGURATION STEP 

During sensor configuration, the user specifies the data to be collected and the 
placement of the sensors. Our approach is to provide a simple language for 
describing the information to be collected by each sensor, and to allow the user 
to indicate where the sensor is to reside. Once such a specification has been 
processed by the monitor, the code for the sensors will be available to be included 
in the subject program, the mechanisms will have been set up to get the data 
packets to the monitor, and the query processing component will know about the 
primitive relations associated with the sensors defined in the specification. As 
with other aspects of the relational approach, complexity has been managed by 
requiring the user to provide a nonprocedural description of what is to be done, 
leaving the issue of how this task is to be done to the monitor, while ensuring 
that the monitor has sufficient information to make this determination. 

To discuss what aspects are specified for each sensor, we need to examine the 
environment in which the sensors operate. We model this environment as a 
collection of typed entities, both passive (i.e., data structures, such as ready 
queues and semaphores) and active (e.g., processes). Entities have identifiers, 
which are system-dependent names. For instance, in UNIX2 [57], processes are 
indicated with process-ids, and files by pairs of device number and inode index; 
in StarOS [32] entities are named using capabilities; and in Medusa [53], by 
descriptor-list/offset pairs. Instances of entity types are displayed to the user as 
character strings; we assume that the operating system supports the mapping 
between user-oriented character strings and internal entity identifiers. The 
internal entity identifiers are assumed to be unique across space and time; this 
assumption can be relaxed at the expense of some additional complexity in the 
monitor [63]. Finally, we assume that the monitor can locate an entity given its 
identifier. 

Type managers export operations to be applied to entities of the type(s) 
supported by the manager; all operations on an entity are performed by the type 
manager through well-defined interfaces, implying the existence of a type- 
checking mechanism. This model thus identifies the operation being performed 
on the target by the performer (the type manager) as a result of a request by an 
initiator (any process). Each sensor is placed in a type manager and is associated 
with an operation (or a set of operations) provided by the type man’ager. For 
example, the file system (a type manager for the file entity type) may have a 
ReadFile sensor located in the code performing the read operation. Other sensors, 
such as OpenFile, PhysicalBlockRead, and ModifyProtection, may also be present 
in the file system. Each sensor is associated with a unique integer, the sensor 
identifier, which is combined with the collected information in the data packet 
sent by the sensor to the monitor. The model applies to all levels of granularity; 
in particular, a type manager and its sensors may be implemented in hardware, 
firmware, or software. In some systems (e.g., StarOS, Medusa), type managers 
are localized in one or a few system processes; in other, non-object-oriented 
operating systems (e.g., UNIX), each type manager is the entire kernel, although 
each type (e.g., file, process) is managed by a fairly small portion of the kernel. 

* UNIX is a registered trademark of AT&T Bell Laboratories. 
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Sensors may be enabled by setting an enable flag. The placement of this flag 
allows flexibility in the enabling of events. Enable flags associated with a passive 
entity, such as a file, arbitrate the collection of monitoring information for that 
entity. Setting the block write event flag associated with a particular file causes 
information to be collected for file block writes only for this file by any file system 
process. On the other hand, setting the file block write enable flag associated 
with a particular file system process (a type manager for file objects) causes 
information to be collected for file block writes on any file performed only by this 
file system process. The placement of the flags allows filtering along three 
dimensions: by target, performer, or initiator. The placement of the sensor allows 
filtering along the fourth dimension: the operation. Each sensor supports filtering 
in two of these dimensions: the operation and one other dimension. However, 
several sensors can be associated with an operation, each designating a different 
flag (with different filtering characteristics) to enable the sensor. The first 
example is filtered on the block write operation and target file; the second is 
filtered on the block write operation and the performer file system process. 

Higher degrees of filtering are also possible. An event may be enabled on a 
combination of three of the components of the operation, such as a block write 
operation by this file system on this file. Filtering on all four aspects represents 
total control over which event records get generated: a block write operation by 
this file system process on this file, as requested by this initiator. Achieving 
higher degrees of filtering requires additional information to be stored and 
additional processing to determine if the event is indeed enabled. This extension 
requires greater than linear space and/or time in the number of entities, and thus 
is expensive in an environment supporting many entities. 

The enable flag can be generalized to an integer counter if multiple enable 
requests are made by the monitor before the sensor executes. In this case, enabling 
involves incrementing the counter, and disabling involves decrementing the 
counter. 

In the preceding discussion, the assumption was made that the operation is 
sensed and the information communicated to the rest of the monitor when the 
operation occurs. Such data packets are called traced data packets, since their 
generation is synchronous with the operation, and thus with the operation whose 
target, performer, and initiator is named in the data packet. 

Sampled data packets, on the other hand, are generated at the request of the 
monitor, asynchronously with the operation. As an example, a sensor located in 
the scheduler of an operating system could generate traced data packets pertain- 
ing to context switching: process x started running at time tl, process y started 
running at time tz, etc. Another sensor located in the scheduler could generate 
sampled data packets at the request of the monitor: process z is now running. A 
sampled sensor will usually, but not necessarily, clear the enable flag after 
generating the data packet, thereby causing only one data packet to be generated 
per request of the monitor. Multiple requests could be handled as before with a 
multiple bit enable flag. 

The data packets generated by sensors contain time stamps from a global clock 
maintained across the entire system. Unfortunately, it is theoretically impossible 
to synchronize imprecise physical clocks over a geographically distributed net- 
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work with nondeterministic transmission times [36]. However, Lamport gives an 
algorithm for maintaining a global clock with a bounded imprecision that main- 
tains the invariant that messages are received at a global time that is later than 
the global time the message was sent. The partial ordering of local events 
necessary for debugging will be preserved and the (unknown) total ordering will 
embed this partial ordering. This time-keeping algorithm can be implemented in 
the operating system itself, with time stamps appended to every message. A 
second option is to simulate Lamport’s algorithm in the monitor. This approach 
incurs a greater overhead than Lamport’s algorithm itself, due to the additional 
communication necessary. Another consideration is that if the operating system 
provides a reliable communication mechanism, supporting recovery from lost 
messages or crashed processors, then a global clock is probably already computed 
by this mechanism (e.g., [6]; all reliable communication mechanisms known to 
the author use some kind of global clock). In any case, if a global clock is provided 
by the monitor, other components of the operating system may profit from its 
presence. Given these considerations, we will assume that a global clock is 
implemented by a distributed algorithm and available to each processor. If such 
a clock is not feasible due to efficiency constraints, as in some real-time systems, 
then more sophisticated approaches, yet to be developed, are necessary. 

Each primitive relation is defined by giving it a name, listing its attributes and 
their types, identifying the target type (the performer and the initiator both have 
the process entity type), selecting either sampling or tracing, and specifying any 
additional desired characteristics such as a multiple bit enable flag. Each such 
specification is only a few lines long, allowing many sensors to be defined for a 
subject system with little effort. Such flexibility relies on three additional char- 
acteristics of the approach: The monitor must be able to generate the code for 
the sensor automatically, the sensors must be very efficient when disabled, and 
the monitor must be able to enable only the particular sensors required by the 
analysis. The first aspect will be discussed in Section 5; future sections will 
examine how enabling is handled and how efficient the sensors are, both when 
disabled and when generating data packets. 

A simplified version of this data collection model was implemented in the 
Clouds operating system [13]. One important difference is that Clouds objects 
can contain code, and hence sensors, whereas our model encapsulates the code 
for an object type in its type manager. A second difference is that only filtering 
on the target object is supported. 

Another model was implemented in the 4.2BSD UNIX and DEMOS/MP 
operating systems [48, 491. By requiring that no a priori knowledge of the 
computation be applied when specifying the sensors, the available event types 
were reduced to 10 “meter events.” Filtering occurs at two points. Individual 
meter events could be disabled (i.e., filtering along the single dimension of event 
type), or the data packets could be generated and later discarded by a separate 
process on the basis of patterns supplied by the user. The filtering performed 
during data collection is thus simplistic; that performed during analysis is more 
general. 

Finally, primitive relations are similar to implicit relations defined by applying 
operators to arbitrary data structures within a programming environment [ 281. 
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4. AN EXAMPLE 

In order to make the actions of the sensor configuration and subsequent steps 
more concrete, we introduce an example subject system (an operating system) 
and discuss some sensors that might be defined in this system. Since the user is 
encouraged to think of sensors as defining historical primitive relations, we will 
employ the entity-relationship model [lo] to describe the sensors. In practice, 
the user employs a sensor-description language to specify these primitive relations 
[63]. As the syntax of the sensor-description language is not critical, the sensors 
will be specified informally, rather than in that language. Although the entity- 
relationship model can also be used to describe the data collected by hardware 
monitors, we will not discuss this possibility further. 

In this example, there are three types of operating system entities known to 
the monitor: Processor, Process, and Mailbox. We also assume that there are 
several processors, which execute the processes and which share main memory. 
At any point in time, a process may be executing on only one processor, though 
a process can execute on more than one processor over its lifetime. A process 
may send messages to a mailbox, where they will be queued until a process 
executes the receive operation on the mailbox. If a receive operation is executed 
on an empty mailbox, the process will block until a message is sent to that 
mailbox by another process. Several processes may be blocked on a mailbox. 
Although this example is, of necessity, simplified in comparison with actual 
hardware and operating systems, it should be sufficient for the purposes of this 
paper. We will now attempt to capture the behavior of this system within the 
relational model. 

Entity relations must be made available for each entity type. The name of each 
is identical to the name of the type. The Processor entity relation contains one 
attribute, the processor identifier. This relation is always enabled; its associated 
sensor is placed in the configuration manager, which handles the restarting of 
crashed processors. The Process entity relation contains two attributes, the 
process identifier and the state, one of Ready (i.e., the process is scheduled but 
not currently running), Running (the process is currently running on a processor), 
Blocked (the process is waiting on a mailbox), or Done (the process has halted or 
aborted).3 This relation is always enabled and is associated with a sensor in the 
process manager. Finally, the Mailbox entity relation contains one attribute, 
the mailbox identifier, and is always enabled. Its sensor is located in the process 
communication manager. 

Within the monitor, relations are differentiated temporally; there are event 
relations and interval relations. Entity relations are always interval relations, for 
they model entities while they exist in the subject system. Each interval relation 
contains two implicit attributes: the time the modeled interval began, and the 
time the modeled interval ended.4 Figure 2 shows the three entity relations, with 
user names denoting the internal entity identifiers. Most of the entities were 
created when the system was brought up at 1:00:00 and destroyed when the 

3 The State attribute is an enumeration and, hence, not one of the entity types mentioned previously. 
4 The partitioning into explicit and implicit attributes was done for language design reasons; see [66] 
for more details. 
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Processor (Processor: ProcessorEntity): 

Processor (From) (To) 
A 1:OOm 4:OOm 
B 1:oo9o 4:oo:oo 

Process (Process: ProcessEntity, State: Enumerated): 

Process 
Pl 
P2 
Pl 
P2 
Pl 
P2 
Pl 
Pl 
P2 
P2 
P2 

Rum&g 2:OO:OO 
Running 205: 12 
R&Y 2:15:37 

waiting 2:45:30 
Running 2:45:30 

Done 2:52:47 
MY 2:54:20 

Running 2:56:10 
Done 2:57:05 

Mailbox (Mailbox: MailboxEntity): 

Mailbox 
Ml 
M2 
M3 
M4 
M5 
M6 
M7 

-5% : : 
1:00:00 
1:OO:oo 
1:Oaoo 
1:OOm 
1:00:00 
1:oo:oo 

cro) 
2:OOm 
2:05:12 
2:15:37 
2:45:29 
2:45:30 
2~54~20 
2:52:47 
4:00:00 
2:56:10 
2:57:05 
4:OOm 

* 
4iOOIOO 
4:oom 
4:Oom 
4:ofMo 
4:Owxl 
4:OO:OO 

Fig. 2. Entity relations. 

system was halted at 4:OO:OO. These entity relations, being associated with 
operating system entity types, will probably be provided to all users of the 
monitor through sensors within the operating system. Additional entity types 
may be defined by the user by specifying the sensors that identify the creation 
and deletion of entities of these new types. Finally, there is a Clock event relation 
that contains no explicit attributes (as shown in Figure 3). The Clock relation 
is treated specially by the monitor; it is generally used to specify sampling, as 
will be seen below. 

Each sensor, in generating a data packet, records that an event has occurred. 
Interval relations are associated with two sensors, one that indicates that an 
interval has begun, and one that indicates that an interval has ended. For 
instance, the Mailbox entity relation is associated with a sensor in the mailbox 
creation portion and a sensor in the mailbox deletion portion of the process 
communication manager. There are actually three sensors associated with the 
Process relation: process creation, process change state, and process deletion. 
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Fig. 3. The predefined clock event relation. 

ClockO: 

SendMessage (Process: ProcessEntity, Mailbox: MailboxEntity) : 

RunningOn (Process: ProcessEntity, Processor: ProcessorEntity): 

Process 1 Processor 
Pl A 
P2 B 
Pl B 
F2 A 

2:05:12 2:45:30 
2:45:30 2:52:47 
2:56:10 2~57105 

Waiting (PrOCf?ss: ProcessEntity, MailBox: MailboxEntity): 

PrzsS 1 MazyOX / 

Fig. 4. Remaining primitive relations. 

The process change state sensor, in emitting a data packet, simultaneously 
indicates that one tuple has ended and another has begun (the event at 2:05:12 
in Figure 2 ends (P2, Ready) and starts (P2, Running)). Such events are converted 
into interval tuples in the initial portion of the analysis step. 

Relationship relations can be either event relations or interval relations. A 
tuple in an event relation describes a change in the state of the system that 
occurred at a particular instant of time. An example is the SendMessage event 
relation, which has two explicit attributes, a Process (the initiator) and a Mailbox 
(the target), and one implicit attribute, the time the event occurred (see 
Figure 4). The tuple (Pl, M3, 2:00:05) in this relation represents the instanta- 
neous event of “Process Pl sent a message to Mailbox M3 at time 2:00:05.” The 
content of the message is not recorded in this relation. This relation is traced on 
the initiator, meaning that a data packet is constructed if a message is sent to 
any mailbox by a process (the initiator) with an associated flag that is enabled. 
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There are two other primitive relations defined for this system. The 
RunningOn interval relation describes which Process (the target) is running on 
which Processor (the performer). This relation is sampled on performer; the 
scheduler of each processor will respond with the current running process when 
requested by the monitor. Since the system state is constantly changing, the 
relations evolve over time. For instance, the tuple (Pl, B) may be valid in the 
RunningOn relation for only a few milliseconds, and new tuples are added to 
the SendMessage relation as messages are sent. The Waiting relation lists the 
processes (the initiators) blocked while waiting to receive from a mailbox (the 
target) and is traced on the target. Since multiple processes might be waiting on 
the mailbox, we specify that the enable flag is a counter several bits wide (this 
option was discussed briefly in the previous section). We also specify that the 
sensor will decrement this counter each time a data packet is generated; this will 
permit an important optimization to be discussed later. 

5. THE SENSOR INSTALLATION STEP 

In the previous step, the user specified the sensors (each associated with a 
primitive relation) in a sensor-description language. At the same time, the 
location of the sensor was indicated. The sensor specification is used by the 
monitor to 

(1) generate the code for each sensor; 

(2) possibly allocate buffers, packet identifiers, counters, and bit vectors for 
enabling the sensors; 

(3) create primitive relations to be referenced in queries; and 

(4) record information concerning the sensors for later use. 

Compilation and linkage of the subject system also occur in this step. This step 
is entirely automatic and generates a fully instrumented subject system. 

Since the sensor specification includes only high-level information concerning 
the enabling and the data to be collected, the monitor has considerable flexibility 
in the code that it generates for the sensor. Implementations can range from 
microcode specialized to that sensor to a call to a standard data collection 
procedure. If speed is of the utmost concern, then the first approach may be 
employed; if space is at a premium, the latter approach may be more appropriate. 
In any case, separating the specification from the implementation allows the 
implementation to be bound automatically and, at a later time, to achieve 
flexibility and efficiency. 

6. THE ANALYSIS SPECIFICATION STEP 

The sensor configuration provides the information necessary to install the 
sensors; the historical queries on the primitive relations associated with these 
sensors provide the information necessary to automate the remaining steps by 
specifying the content of derived relations. In this way, information not antici- 
pated by the designer of the monitor may still be requested by the user, provided 
the basic information (i.e., the primitive relations) is available to the monitor. 
Historical queries are expressed in the temporal query language TQuel [66]. 
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TQuel is a general temporal query language, augmenting the (static) relational 
tuple calculus query language Quel [24] with additional constructs and providing 
a more comprehensive semantics by treating time as an integral part of the 
database. The TQuel retrieve statement is used to derive new relations from 
existing relations. TQuel includes 15 other statement types, supporting the 
creation and destruction of databases and relations, storage structure modifica- 
tion, bulk copy of data, and consistency, integrity, and concutrency control. As 
these statement types are not relevant to the subject of this paper, they will not 
be discussed further. 

The Quel retrieve statement selects a subset of the tuples in one or more 
relations, extracts one or more attributes from the tuples in this subset, and 
combines the attributes into result tuples. The retrieve statement works in 
conjunction with the range statement. The statement 

range of S is SendMessage 

specifies that the tuple variable S will represent the tuples of SendMessage on 
any subsequent retrieve statements. 

The retrieve statement creates a new relation whose tuples satisfy a Boolean 
expression specified in the where clause. The expressions appearing in the retrieve 
statement contain constants and attributes from previously defined tuple vari- 
ables. The target list specifies the attributes to appear in the derived relation. 
TQuel also includes two additional clauses in the retrieve statement: the valid 
clause, similar semantically to the target list, and the when clause, similar to the 
where clause. Both employ variants of path expressions [22]. The valid clause 
specifies the intervals (or event) when the information in the derived relation 
will be valid. Th.e conventional where clause specifies a predicate on the explicit 
attributes that selects those tuples of the underlying relation(s) that will contrib- 
ute toward the new relation. The when clause specifies a predicate on the implicit 
time attributes, to be used in the same way. Tuples from the underlying relations 
must satisfy both predicates if they are to participate further. As an example, 
the following query answers the question “Which processes were resumed by 
process Pl?” This information is useful, for example, when a bug in a multipro- 
cess program is observed to occur only when process Pl is not blocked. A 
traditional monitoring system might be able to show which processes were 
awakened by messages, or to which mailbox each message was sent, but would 
probably not have anticipated the need for this particular question, and so would 
not have included this query in its menu of available analyses. 

range of S is SendMessage 
range of W is Waiting 
retrieve ResumedbyPl (Process = W.Process) 

valid at end of W 
where S.Mailbox = W.Mailbox and S.Process = Pl 
when S precede end of W 

This query determines those processes (Process = W.Process) that were initially 
blocked on a mailbox (indicated by their presence in the Waiting relation), then 
resumed (S precede end of W) as a side effect of a message being sent by Pl 
(SProcess = Pl) to the mailbox (S.Mailbox = W.Mailbox). Since the valid-at 
clause was used, the resulting relation is an event relation (see Figure 5). The 
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FbsumdbyPl (Process: ProcessEntity): 

Fig. 5. A derived event relation. 

required chain of events is: (1) W.Process attempts to receive a message from 
W.Mailbox, which is currently empty; (2) W.Process blocks, causing the tuple 
(W.Process, W.Mailbox) to be inserted into the Waiting relation; (3) Pl sends 
a message to SMailbox, causing the event tuple (Pl, SMailbox) to be added 
to SendMessage; and (4) W.Process becomes unblocked, causing the tuple 
(W.Process, W.Mailbox) to be removed from the Waiting relation. In TQuel 
causality is not explicit, but must be inferred from the ordering of events in the 
subject system, as illustrated in this example. This query, chosen to illustrate all 
of the TQuel clauses, is necessarily more complex than those usually employed 
by users, but does serve to indicate the expressiveness possible. 

The when clause can also be used to indicate sampling. The user can request 
that the RunningOn relation be sampled every 10 seconds through the query 

range of RO is RunningOn 
range of C is Clock[ lo] 
retrieve RunningOnEverylOSeconds (Process = RO.Process, Processor = RO.Processor) 

when C overlap RO. 

Clock[lO] denotes a clock that ticks once every 10 ticks of the underlying Clock 
relation, which ticks once a second (cf., Figure 3). Such a query is potentially 
less costly to execute, and demonstrates how a low-level detail (in this case, 
sampling over tracing) is specified in a high-level, nonprocedural fashion. 

Queries on these same primitive relations are given elsewhere [64] that identify 

-the ready processes; 

-those processes that can unblock the currently blocked processes by sending 
messages; 

-the processors running the processes that have the capacity to unblock the 
currently blocked processes; 

-the interval between a message being sent and the recipient being unblocked; 
and 

-the current length of the queue of waiting processes for each mailbox. 

These queries illustrate the expressive power afforded by having a relationally 
complete language available to specify the information to be extracted and 
computed by the monitor. Since the TQuel semantics is an extension of the Quel 
semantics (both are based on the tuple calculus [66, 68, 72]), the meaning of 
these queries is on a solid formal basis. 

7. THE DISPLAY SPECIFICATION STEP 

The display specification step is similar to the sensor configuration and analysis 
specification steps in emphasizing the conceptual model of a historical database. 
In the sensor configuration step, the user describes the sensors by defining several 
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entity and relationship relations. In the analysis specification step, the user 
describes the processing by defining through a relational query language several 
derived relations, each containing one or more entity attributes. In the display 
specification step, we continue to exploit the relational model [60]. Each entity 
relation is associated with a graphical representation. These representations have 
fixed aspects and aspects that depend on the values of the attributes. When the 
tuples of the relation are displayed, each tuple will cause an instance of the 
representation for the corresponding relation to be computed and displayed. For 
this example, we associate the Process relation with a circle. The (external 
equivalent of the) process identifier value will appear as text centered in the 
circle, and the status will be represented by the intensity of the circle (with closer 
to Running being darker). The value of the process identifier will also determine 
the vertical position of every circle (after they have been alphabetically ordered); 
the horizontal position of every process will be the left-hand side of the screen. 
The Processor relation is represented with a rectangle whose vertical position 
will be determined by the processor identifier value (again, in alphabetical order), 
which will also appear at the top right-hand corner of the rectangle; the horizontal 
position is again the left-hand side of the screen. Finally, the Mailbox entity 
relation is represented by an oval, with the value of the mailbox identifier 
appearing in the center and also determining the vertical position; the horizontal 
positions of all mailboxes are the right-hand side of the screen. The actual 
specifications are quite simple: 14 commands suffice for the three entity relations 
(as with the sensor-description language, the details of the syntax of the display 
specification language are not relevant, so the actual commands are omitted). 

The primitive relationship relations are also associated with representations. 
The representations for these relations will differ from previous representations 
in that they will use the representations of the entities participating in the 
relationship. The RunningOn relation involves two entity types: process and 
processor. We will represent this relationship using spatial inclusion: If process 
Pl is running on processor A, then the iconic representation of Pl (a circle) will 
appear inside the iconic representation of A (a rectangle). The representation of 
the Waiting relation will be specified as a pointer from the mailbox icon to the 
process icon. Finally, the representation of the SendMessage relation is a 
pointer from the process icon to the mailbox icon. The actual specifications for 
these relationship relations consist of 11 commands. 

Finally, we need a representation for time. Of the several available, we choose 
animationtrace, where the display changes over time as the underlying relations 
evolve. With animationtrace, full intensity indicates the current state with 
various decreases in intensity indicating past states. We augment this represen- 
tation with a digital clock icon. Representations can also be associated with 
derived relations. In this case, we specify that the display system flash on and 
off the circles representing those processes that were resumed by process Pl, as 
stored in the ResumedbyPl relation. If we give the commands to display the 
Process, Processor, Mailbox, RunningOn, Waiting, and SendMessage 
relations, the system then displays a movie of the execution of the monitored 
system. 

The display specification step, as just presented, has four important character- 
istics. First, it is closely coupled to the underlying conceptual model, the entity- 
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relationship model, which is also the basis for the sensor configuration and 
specification steps. Representations are associated with entities and with rela- 
tionships. Second, there is variety in the supported representations. The currently 
available icons are point, line, pointer, curve, polygon, circle, text, user-defined 
icon, and combinations of these. The aspects that can be coupled to an attribute’s 
value are intensity, color, rotation, scale, transformation, horizontal position, 
and vertical position. Time can be represented as animation, animationtrace, 
four types of icons, color, intensity, blinking, or five types of geometric transla- 
tions. That time can be displayed in so many ways, separately or in combination, 
allows different aspects to be emphasized. The representation of animationtrace 
chosen for the example emphasizes the situation at consecutive instants of time. 
The alternative of representing time horizontally would emphasize the duration 
of particular states: The representation of states that existed for a long time 
would be spread across the screen, while the representation of other, short-lived 
states would occupy less screen space, and hence would be less noticeable. Third, 
the user is able to specify the representation, both of the provided relations and 
of those derived by the user via TQuel queries. These representations may be 
modified at any time, supporting the incremental development of the display 
specification. Finally, the commands for specifying the display are simple, allow- 
ing the user to concentrate on the task at hand: understanding the behavior of 
the subject system. 

8. THE EXECUTION STEP 

Previous sections have discussed how sensors, queries, and the display may be 
specified in a high-level, declarative fashion. Such simplicity and expressive 
power have a cost: The monitor must be able to determine which sensors to 
enable, what calculations to perform, and how to display the results, all with 
minimal guidance from the user. Fortunately, there has been much work on 
processing relational query languages. It is important to keep in mind, however, 
that there is a fundamental difference in the way that a DBMS and the monitor 
operate. In a DBMS, the data is present on secondary storage, and queries derive 
new relations, to be displayed or stored. In the monitor, the queries are made on 
a conceptual database; the actual data is not collected until after the query has 
been made by the user. Despite this difference, the techniques used in conven- 
tional DBMSs may still be profitably applied, with some alterations, to a 
relational monitor. This section will address enabling the sensors, generating the 
data, analyzing the data, and displaying the derived relations. 

8.1 The Relational Algebra 

Tuple calculus queries, such as those formulated in Quel or TQuel, express what 
derived information is desired, letting the DBMS determine how the information 
is to be derived. Relational algebra expressions serve the latter purpose. The 
DBMS converts each tuple calculus query into an algebraic expression. As this 
expression is often quite inefficient, optimizations are applied that convert the 
initial expression into a semantically equivalent one that is more efficient. 

We assume that the reader is familiar with the common relational operations 
selection ( uF), projection ( 7rdld,. &, Cartesian product (x), and intersection (n) 
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[72]. Converting a Quel query into a relational algebra expression is straightfor- 
ward: first take the Cartesian product of the underlying relations (each associated 
with a tuple variable used in the query), apply a selection with the formula from 
the where clause, and then apply a projection, with the attributes from the target 
list. The algebra may be extended to handle TQuel’s valid and when clauses, 
involving the extension of the projection and selection operators, respectively 
[46]. In the remainder of this paper, we give a somewhat simplified version of 
this algebra, emphasizing the correspondence with the conventional relational 
algebra. The projection and selection operators remain, but only involve the 
explicit, nontemporal domains. The valid clause is handled by a temporal variant 
of the projection operator, denoted by 7rr. This operator will “project out” those 
intervals designated by expressions in the valid clause. The when clause is 
handled by a temporal variant of the selection operator, denoted by gT. The 
subscript for this operator consists of the temporal predicate specified in the 
when clause. The operator will “select out” those tuples satisfying the predicate. 
The aT and aT operators are employed in the same manner as the r and c 
operators. For example, the query for ResumedbyPl has the corresponding 
temporal relational algebra expression 

~W.Process ~LhlofW dprecedeendofW ( ( 

(: =: (. US Madbox W Madbox CS Process=Pl (Waiting, x SendMessages))))) (E1) 

and the query for RunningOnEverylOSeconds has the corresponding expres- 
sion 

d&&erlapRO (RunningOnRo x Clock[lO]c)) UW 

Note that the tuple variable associated with a relation is indicated as a subscript 
on that relation. 

A more substantial modification is to make the operators incremental, so that 
they operate on streams of tuples, one at a time, possibly generating one or more 
output tuples whenever an input tuple arrives [45]. The selection and projection 
operators (both conventional and temporal) are straightforward to extend to 
operating on streams rather than sets. Each such operator would generate at 
most one output tuple for each input tuple, and no tuples would have to be stored, 
assuming that the projection operator does not perform duplicate elimination. 
The Cartesian operator is more complex, for two reasons: it is a binary operator 
and it requires internal storage. It stores the tuples arriving from the left, and 
concatenates all of these tuples to tuples arriving from the right, thereby gener- 
ating multiple output tuples for each input tuple. The brute-force Cartesian 
operator requires storage for all the input tuples; more space-efficient variants 
also exist. 

In summary, each TQuel query is converted into an algebraic expression 
consisting of the underlying relations and the incremental temporal operators 7r, 
7rT, u, UT, and X. Once these expressions for the TQuel queries have been 
generated, they can be used to enable sensors and analyze the incoming data. 

8.2 Incorporating Primitive Relations in the Algebra 

Enabling sensors manually in a complex system is very difficult for the user, due 
to the potentially large number of sensors. One alternative, the brute-force 
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enabling of all sensors, is excessively inefficient. Hence, the monitor should 
handle the task of determining which sensors to enable, and should enable only 
the necessary sensors, thereby filtering out unnecessary data packets. Filtering 
should occur early and often, so that scarce communication and processing 
resources are not expended on data that are later discarded. 

The monitor must extract as much information as possible from the query to 
enable the correct sensors. This information is used to enable the appropriate 
traced sensors and to trigger the appropriate sampled sensors at the appropriate 
times on the appropriate entities. The strategy employed here modifies the 
temporal relational algebra to accommodate primitive relations. In queries in- 
volving derived relations, the expression associated with the derived relations is 
substituted into the expression for the current query. In the following subsections, 
we first introduce a new operator to take the place of primitive relations. This 
operator enables a particular sensor as a side effect. The algorithm given above, 
which translates TQuel statements to algebraic expressions, is extended to specify 
defaults for which sensors to enable. Transformations then map these expressions 
into semantically equivalent expressions that enable fewer sensors. These trans- 
formations are similar to those used to optimize conventional algebraic expres- 
sions generated from static query languages. 

These steps are applied to Expressions (El) and (E2), mapping them first into 
expressions that enable sensors fairly freely. Optimizations are then applied, 
resulting in expressions that are careful to enable a minimal number of sensors. 

8.3 The CY Operator 

To incorporate primitive relations in the algebra, a new operator, CY, is used. 
There are several variants of this operator, taking from one to three algebraic 
expressions as arguments. The first argument of this operator in all cases provides 
a relation indicating which sensors to enable (this relation must have exactly one 
explicit attribute of an entity type), and the output of the operator always consists 
of the tuples generated by these sensors. The subscript of this operator denotes 
the tuple variable associated with the primitive relation and, thus, indirectly, 
with a sensor. The superscript denotes the strategy employed to collect the data 
associated with the primitive relation; the strategies accommodate several var- 
iants of two-dimensional filtering (cf., Section 3). 

T:P Traced, with the enable flag in the performer. 

T:I Traced, with the enable flag in the initiator. 

T:T Traced, with the enable flag in the target entity. 

S:P Sampled, with the enable flag in the performer. 

S:T Sampled, with the enabled flag in the target entity. 

D:P Traced, then disabled, with the enable flag in the performer. 

D:I Traced, then disabled, with the enable flag in the initiator. 

D:T Traced, then disabled, with the enable flag in the performer. 

S:I is not useful, since the initiator is always the monitor process in the case of 
sampled sensors. 

The (Y operator is substituted for the primitive relation(s) appearing in the 
expression. For example, the SendMessage event relation is traced on the 
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initiator. If this relation was referenced in a query through the tuple variable S, 
it would appear in the algebraic expression as 

asT”(?). 

The “I” is replaced with an algebraic expression computing the processes for 
which this sensor is to be enabled. Let us suppose that this expression was simply 
the constant process entity identifier Pl. Then this operator would cause the 
enable flag for the SendMessage sensor to be set in the process named by Pl. 
When the process named by Pl executed a SendMessage operation, the sensor 
would fire and would generate a data packet containing the entity identifier for 
the process (i.e., Pl), the entity identifier for the mailbox being sent to, and a 
time stamp (cf., Figure 4). This data packet would be converted into a tuple, 
which would be contained in the relation output by the a operator. Like the other 
operators, the (Y operator is incremental, both in the tuples it accepts from its 
argument(s) and in the tuples it generates. In this example, each time the 
SendMessage sensor generates a data packet, the a operator subsequently emits 
a tuple. For some primitive relations, the LY operator converts the data packets 
indicating event occurrences into interval tuples, as discussed in Section 4. 

The &T:P, &T:Z, &T:T, &D:P, &D:Z, and aD:T operators have one argument, the 
relation comprised of entities containing the flag to be enabled. The czD operators, 
termed disable traced, are associated with sensors that immediately disable their 
enable flag after generating a data packet. The cyszp operator has two arguments: 
the entity containing the enable flag (the performer), and a specification of when 
to sample. The explicit attributes of tuples of the second argument are ignored; 
each entering tuple triggers a request by the monitor to enable the appropriate 
sensor, causing sampling to occur. Generally the second argument is the Clock 
relation. The aStT operator has three arguments: what to enable (the target 
entity), when to sample, and who to request the sampling of (i.e., the performer 
of the sampling). The third relation must have one explicit attribute, of an entity 
type. In all cases, the output consists of the tuples in the relevant primitive 
relation generated as a side effect of tuples entering the a operator. 

A few examples will clarify the differences between the types of (Y operators. 
We have already examined the SendMessage event relation. The RunningOn 
interval relation is sampled on the-performer, and would appear in the algebraic 
expression of a query referencing it through the tuple variable RO as 

c&f(~ “) ., . 

The first “?” would be replaced with an expression computing processes; the 
second “?” would be replaced with an expression computing events, at which 
times the request to sample would be conveyed to the processes comprising the 
first argument. The Waiting interval relation is disable traced on the target 
mailbox: 

When entities arrive from the expression replacing the “T”, the Waiting sensor 
is enabled. However, it is immediately disabled (by the sensor) once the operation 
occurs and the sensor generates the data packet. 
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The CY operator is distinct from the other relational operators in that the out- 
put tuples are not simply a function of the input tuples. Instead, the output 
tuples comprise a subset of the primitive relation associated with the operator, 
the subset being determined indirectly by the input tuples. Hence, the tuples 
output by olg’(P1) will be a subset of the tuples conceptually present in the 
SendMessage primitive relations: exactly those tuples with an initiator of Pl. 
Equivalently, the output tuples comprise the data packets generated by the 
associated sensor (e.g., the SendMessage sensor), which was enabled as a side 
effect of input tuples entering the CY operator. The incremental execution of a 
temporal relational algebraic expression is coupled with the sensors in the subject 
system through the LY operator(s) appearing in the expression. 

There is one additional connection between the input and output tuples of an 
(Y operator. As an example, we will use cyst” again. The set of entity identifiers 
present in the input tuples of this operator (in the case, only Pl) will be a 
superset of the set of entity identifiers present in the Initiator position of the 
output tuples, since only those entities were ever enabled. Similar statements 
can be made of each variant of (Y operator. The (Y operator is similar in this 
aspect to Horwitz’s selective retrieval function, which generates tuples having 
particular values for particular attributes [28]. 

8.4 Entity Sources 

The algorithm translating TQuel queries to algebraic expressions must specify 
defaults for which sensors to enable, that is, the arguments to the CY operators. 
Here the entity relations (defined in Section 3) for the entity types in the subject 
system are used. These relations generate tuples naming all existing entities of 
that type and are termed entity sources. Entity sources are denoted by the entity 
name: Process denotes the entity relation and hence the associated sensor that 
generates all existing process entities (recall from Section 3 that this sensor may 
be found in the process manager). 

Entity sources complete the terms replacing the primitive relations. The term 
replacing SendMessage in (El) is 

&‘(T, rOceSS (Process)) 

Note that a projection operator is necessary for those entity relations that contain 
more than one attribute. For the second argument of sampled a! operators, which 
specifies when to sample, one of the primitive clock relations is used as a default. 
The term for RunningOnRo appearing in (E2) is 

&‘(Processor, Clock) 

(note that Clock is used as an entity source), and the term replacing Waitingw 
in (E2) is simply 

&T(Mailbox) 

The specific (Y operator substituted for each primitive relation appearing in the 
query can be determined solely from the sensor specification of that relation (cf., 
Section 3). The default arguments are also easily determined from information 
in the sensor specification. 
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The final algebraic expression for the ResumedbyPl query can now be 
presented (compare with (El)): 

*W.Process ~aTtendofW ‘&recedeendofW ~S.Mailbox=W.Mailbox ( ( ( 

(~s.Process=P1 (&T(Mailbox) x as’:‘(~P,,,,,,(Process))))))) (E3) 

as can the expression for RunningOnEverylOSecond query (compare with 
032)): 

rift ,(a: overla,, Ro(ag:(Processor, Clock) x Clock[lOlc)) (E4) 

Entity sources are associated with sensors that are permanently enabled. Note 
that an entity relation need not be an entity source if it never appears as a 
default parameter of an (Y operator, but an entity source must be an entity 
relation (or the Clock relation). 

8.5 Data Generation and Analysis 

At this point, the TQuel query, which is declarative in nature, has been mapped 
into an algebraic expression containing the 7r, ?yT, u, aT, X, and a! operators, as 
well as entity sources. Recall that the temporal relational operators are incre- 
mental, in that they take streams of input tuples one at a time and possibly 
generate one or more output tuples whenever an input tuple arrives. The entity 
sources are also incremental, generating tuples whenever a new entity is created 
(a tuple is also generated when an entity is destroyed). The expression is started 
by having the constants and entity sources (e.g., Mailbox and Process in 
Expression (E3)) generate initial tuple streams. These streams are comprised of 
unary tuples, each containing one entity identifier. Expression (E3) is primed 
with two streams, one containing a tuple for each process and one containing a 
tuple for each mailbox, acquired from the process communication manager. 
Similarly, Expression (E4) is primed with three streams: two generated by the 
clock and one containing a tuple for each processor, acquired from system 
configuration tables. 

The initial tuples flow into the specified operators. In the case of (Y operators, 
the tuples indicate which entities contain the appropriate enable flags to set. The 
monitor deduces the entity’s location from the entity identifier (the mechanism 
presented in Section 2 assumed that this was possible) within the tuple, and sets 
the enable flag in the entity, thereby enabling the sensor. Once enabled, the 
sensors generate data packets, which are gathered and sent to the monitor, where 
they are separated by sensor identifier. The sensor identifier names a particular 
a! operator (or operators) associated with a tuple variable ranging over the 
primitive relation associated with a sensor. The data packets containing the 
correct sensor identifier form the tuples output by the CY operator. Hence, tuples 
flowing into the cy operator indirectly enable various sensors, which generate data 
packets that eventually comprise the output of the a! operator. The tuples flowing 
into a! operators representing intervals specify both when to enable a sensor on 
a particular entity and when to disable that sensor on that entity. The interpre- 
tation of the expression continues until all the sensors are disabled in the course 
of execution. 
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The tuples flowing out of the cy operators flow into 

-the r operator, which outputs a tuple each time a tuple flows into it, with fewer 
attributes; 

-the rT operator, which outputs a tuple each time a tuple flows into it, while 
calculating the time stamp for the output tuple as a function of the time 
stamp(s) in the input tuple; 

-the u operator, which outputs the tuple if it satisfies the given predicate on the 
explicit attributes; 

-the aT operator, which outputs the tuple if it satisfies the given predicate on 
the implicit time attributes; or 

-the x operator, which concatenates tuples flowing in on the left side with 
tuples flowing in on the right side. 

Each expression is a data-flow program [l] in the form of a tree, with entity 
sources at the leaves and operators at the interior nodes. Tuples flowing out of 
the root of the tree are displayed to the user or stored for later analysis. Tuples 
flowing across interior branches exist for only a short amount of time. In 
particular, intermediate relations, which consist of all tuples flowing over a given 
branch of the tree, are never fully constituted; at any time, small portions of 
these relations may be found flowing across a branch or residing in the local 
storage of an operator. 

For each TQuel query, there are potentially many algebraic expressions that 
are semantically equivalent to the query, yet may vary greatly in efficiency. The 
steps detailed in Sections 8.1-8.4 result in one of these algebraic expressions. 
Unfortunately, this expression is usually quite inefficient. Expression (E3) is an 
example. The Mailbox sensor generates all the mailboxes, and the Process sensor 
generates all the current processes. The Waiting sensor is enabled for the 
mailboxes, and the SendMessage sensor is enabled for the processes. As processes 
send messages, data packets are produced by the SendMessage and Waiting 
sensors. The Cartesian product generates a tuple for each combination of tuples 
generated by the LX operators associated with the Waiting and SendMessage 
sensors; the number of generated tuples grows as the product of the total number 
of block and send operations by all processes. Almost all the tuples are subse- 
quently discarded by the three selection operators. Finally, one explicit and one 
implicit attribute are projected out, forming the resulting tuples. As another 
example, the processing of Expression (E4) results in samples that are taken 
every second, then concatenated with a tuple for every clock tick, and then 
discarded if the time the sample was taken does not correspond to the time a 
particular clock tick occurred. The (in)efficiency of Expressions (E3) and (E4) is 
a direct result both of the expressive power of the nonprocedural query language 
TQuel and of the simplicity of the initial translation into a relational algebraic 
expression. Clearly, this inefficiency is unacceptable and must be ameliorated if 
the relational approach is to be a viable one. 

8.6 Algebraic Optimization Transformations 

The term “optimization” is a misnomer; a more accurate term is “improvement,” 
for an optimal solution almost never results. However, we will continue to use 
this term, with the understood proviso. 
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One benefit of using the relational model with monitoring is that traditional 
optimization techniques may be utilized directly. One example is the transfor- 
mation 

dR1 x Rz) + R1 x dRz) (01) 

which applies if the predicate F only involves attributes from Rz. This transfor- 
mation can dramatically reduce the number of tuples generated by the Cartesian 
product, since uninteresting tuples are discarded before rather than after the 
Cartesian product. This optimization can be applied once to the Expression (E3), 
with the substitutions 

S.Process=Pl for F. 
Waiting for RI. 
SendMessage for &. 

resulting in 

TW.Proces~ ~~endofW ( ( ~~~~reeedeendofW ( ~S.mailbox=W.mailbox 

GT(Mailbox) X ~s.P~~~~~~=P~(~~‘(~P~~~~~(P~oc~ss))))))) UN 

Note how the selection us.Process=P1 was moved to before the Cartesian product 
operator. A collection of such transformations has been developed for the con- 
ventional relational algebra [62]; these transformations apply directly to the 
temporal relational algebra [46]. 

A second class of transformations involves the (Y operator. Using entity sources 
as arguments to (Y corresponds to enabling everything. However, transformations 
may be applied to map expressions into semantically equivalent expressions by 
replacing entity sources with more constrained expressions that (a) enable fewer 
sensors, (b) replace sampling with tracing, or (c) sample less frequently. Approx- 
imately 10 transformations, each with several variants, have been developed thus 
far; only a few will be discussed here. The first shares some features with the one 
just given: 

Ut.initiator=K((YtT:I(E)) + aT:‘(Ul=K(E)) (02) 

In these transformation schemas, variables to be substituted are in italics. 
Intuitively, this transformation states that, rather than enabling a sensor on a 
large number of processes (a(E)) and then discarding (a) many of the data 
packets so generated, you should enable the sensor on only the relevant processes. 
The reason that a~‘(~~=&)) appears on the right-hand side rather than simply 
the constant K is that a:’ should be enabled for process K only if E contains K. 
Otherwise, no sensors should be enabled. 

In this transformation, E is an arbitrary algebraic expression that returns a 
relation with one attribute of type process; t is a tuple variable associated with a 
primitive relation traced on an initiator; K is a constant denoting a particular 
process identifier; and “1” is the name of the first attribute. In the expression 
before the transformation is applied, the appropriate sensor is enabled for all 
processes, with most of the resulting data packets (tuples) discarded by the 
selection operator. In the expression resulting from the transformation, if E 
contains the process K, then the appropriate sensor in that process is enabled. 
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There is no need to discard any data packets, because all the data packets are 
guaranteed to have a performer of K. This transformation can be applied to 
Expression (E5), with the substitutions 

S for t. 

S.Process for t.initiator. 

Pl for K. 
~p,,,ess (Process) for E. 

resulting in 

~W.Process TatendofW OSprecedeendofW tT tT ( ~S.Mailbox=W.Mailbox 

(c#‘(Mailbox) x ct~‘(a,=P1(ap,,,,,,(Process))))))) 036) 

There is another transformation that is even closer (semantically, not syntac- 
tically) to the traditional one that moves a selection to before a Cartesian product: 

&precedeendoft ~E2.A=t.target ( bfzT(&) x Ed + afrTU% n ~E,.A 0%)) (03) 

In the left-hand side of this transformation, the attribute A, which must be in 
EP, is being used to select tuples generated by a:“. An example may be found in 
Expression (E6), where S.Mailbox is used to select tuples generated by c&r. 
In the left-hand side of the optimization, (Y~ generates a stream of tuples, which 
are concatenated with tuples in Ez, and then most are thrown away, based 
on a comparison of the target with -an attribute of Ez. However, since the 
associated sensor is disable traced on the appropriate attribute (the target) 
anyway, the filtering may occur when enabling the sensor, rather than later, after 
the unnecessary data packet has been generated. On the right-hand side of the 
transformation, 0~:‘~ is enabled on only the relevant entities, as indicated by the 
attribute of Ez (the entity must also be in El, or it would not have been enabled 
by the original expression). The temporal selector aT on the left-hand side is 
necessary because Es cannot be used to enable o$’ if t finishes before E,. 

There are three restrictions on the application of this transformation: 

(1) Only attributes associated with the tuple variable t may be used by operators 
on the tuples produced by the expression; those found in E2 are not available 
for further use. 

(2) The attribute begin of t is not needed, because (Y~ may not have been enabled 
when begin of t occurred, even if it was enabled when end of t occurred. 

(3) E, is an expression computing an event relation. 

This transformation may be used on Expression (E5), using the substitutions 

W for t. 

W.Mailbox for t.target. 

Mailbox for El. 
asT:l(ul,pl (Pp roce9s (Process) ) ) for EZ . 

S.Mailbox for E2.A. 
“S precede end of W” for “E2 precede end of t”. 
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resulting in 

~W.Process ~Lmio*w ( 
WT(Mailbox fl ~S,Mailbox(~~‘(fll=~1 (ap,,,,,(Process))))))) (E7) 

There are many variants on this transformation, each on a different kind of 
(Y operator and each having different constraints. Note that, while entity sources 
are still at the leaves of the parse tree, the cy operators are no longer just above 
them, as was the case in all the previous expressions. This example shows that 
(Y operators can appear anywhere within the tree, thereby utilizing the full power 
of the relational algebra in determining which sensors to enable. 

It should be noted that complications arise when multiple (Y operators referring 
to the same primitive relation are present in a collection of queries. Either this 
situation must not be allowed, or the monitor must be able to sort out the 
incoming data packets from the sensors and determine which LY operators to send 
each packet to, or the (Y operators must perform this selection themselves. The 
correct filtering is still performed at the sensors, in any case. 

A third class of transformations involves entity sources. We give two here: 

alaA?)+ K (04) 

?flE*E (0% 

Both derive from the definition of the entity source ? and elementary set theory, 
and assume that K and E are of the same entity type as ?. The first states that 
selecting a particular entity out of an entity set results in that entity (if the entity 
can be named, it must be in the entity set). The second states that taking the 
intersection of a subset of entities and an entity set results in that subset. The 
first transformation can be applied to Expression (E7), substituting “Pl” for “K" 
and “~Process(Process)” for “?” to get 

~W.Process (r LndofW aw ( D’T(Mailbox fl ~S,~,i~b~x((Y~‘(Pl))))) 033) 

The second transformation can be applied to this expression substituting 
“as.Mailbox((YST:‘(Pl))” for "E" and “Mailbox” for “?” to get 

~W.Process ~LndofW ffw ( ( D’T(pS.Mailbox((Y~‘(P1))))) (E9) 

The fourth class of transformations involves the Clock event relation. This 
relation can be used to specify sampling rates; several of the transformations 
allow the monitor to handle this. The transformation 

*at CbCToverlapt (afTP(E1, E,) x Clock[i]c)) + afzP(R, Ez r-T Clock[i]c) (06) 

modifies the second argument of the (Y operator, which specifies the sampling 
frequency. The subscript C on Clock[i] indicates the tuple variable associated 
with this predefined relation. Recall that the postfix “[i]” denotes a clock that 
ticks once every i ticks of the underlying clock. The right-hand side specifies 
that the sensor is to be sampled less often. 

A second transformation 

Clock[n] n Clock[n*i] -+ Clock[n*i] (07) 
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allows longer frequencies to be used (note the similarity with optimization (05)). 
Both transformations may be applied to Expression (E4). The first transforma- 
tion results in 

&(Processor, Clock rl Clock[lO]c) 

and the second in 

a%(Processor, Clock[lO]c) WO) 

(Clock is shorthand for Clock[l]) with the result that the RunningOn sensor 
is sampled every 10 seconds, rather than the default sampling frequency. 

A final class of transformations selects a more efficient variant of an operator 
based on the temporal ordering of the input tuples to the operator and the desired 
temporal ordering of the output. For example, the Cartesian product operator in 
its most general form must store internally all incoming tuples from the left, so 
that they can be later concatenated with incoming tuples from the right. If the 
tuples on both sides were in temporal order, and their overlap was desired, a 
much more efficient Cartesian product may be used: 

where x1 denotes the particular variant of the Cartesian product. This operator 
would only store those tuples from the left that could possibly overlap with those 
from the right, discarding the rest from internal storage. 

The transformations from the five classes (traditional, involving the (Y operator, 
involving entity sources, involving the Clock event relation, and involving more 
efficient variants of an operator) are repeatedly applied in order to the algebraic 
expression until no more are applicable (the application of one transformation 
can enable the application of another transformation). A comparison of the 
processing resulting from the “before” Expression (E3) with the processing 
resulting from the “after” Expression (E9) for the ResumedbyPl query indi- 
cates the increase in efficiency that is possible. The previous examination of 
Expression (E3) revealed that it was very inefficient. The transformed expression, 
on the other hand, is quite efficient. First, the Send sensor is enabled only for 
the Pl process (LYEI(P When Pl actually sends a message, the mailbox 
identifier is extracted from the data packet (rs.Mailbox), and the Waiting sensor 
is enabled for this mailbox ((rsT). Since the enable flag is actually an integer 
(cf., Section 4), multiple send operations by Pl are handled correctly. When a 
process is unblocked, receiving the message, the Waiting sensor sends a data 
packet containing the process identifier and the mailbox identifier. This sensor 
is also disabled by the monitor, awaiting reenabling when Pl sends another 
message to the mailbox. The process identifier and end time are projected out of 
the data packet, forming the resulting tuple. Using the sample data from Section 
4, Expression (E9) is primed with the single process identifier for Pl; tuples flow 
out of (YC’ operators (those shown in Figure 2) and into the projection operator, 
resulting in the tuples (M3, 2:00:05), (M4, 2:00:06), and (M7, 2:51:13). These 
tuples successively flow into &r, which subsequently generates the tuple (P2, 
M7, 2:45:29, 2:54:20), which flows into the two projection operators, resulting in 
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the tuple (P2, 2:54:20) as shown in Figure 5. The number of generated tuples is 
linear in the number of send operations by Pl. 

Expression (ElO) is also much more efficient than the initial attempt (Expres- 
sion (E4)). The optimized expression specifies that the RunningOn sensor is to 
be sampled by the scheduler of each processor every 10 clock ticks. 

The relative increase in efficiency observed in these two examples is primarily 
an indication of the gross inefficiency of the unoptimized expression; the absolute 
efficiency suggests that the optimizations enable the minimal sensors and perform 
just the computations needed to derive the desired information. 

8.7 Display Generation 

Once the tuples in the derived relation have been computed by the optimized 
algebraic expression, they are used to generate the images on the display device. 
For each tuple, a graphical object (a data structure) is first constructed from the 
fixed aspects of the representation associated with the derived relation (the 
possible graphical aspects were reviewed in Section 7). The attribute-dependent 
aspects are then calculated, based on the values present in the tuple. Temporal 
modifications dictated by the specified time representations are then made to 
the graphical object, which is then translated into appropriate calls to the low- 
level graphic routines to display the object. Incremental display modification 
over time is possible because the fixed aspects of the graphical representation 
are differentiated from the attribute-dependent aspects, which are further differ- 
entiated from the temporally dependent aspects. Details of the display processing 
are given elsewhere [60]. 

9. IMPLEMENTATION 

While the analysis in Section 2 demonstrated the many advantages of the 
relational approach over traditional monitoring techniques, two substantial issues 
remain: system complexity and performance. The relational approach requires a 
sophisticated monitor: Can the functions of the monitor be partitioned so that 
each component is of manageable size and the interaction between components 
is well defined? Regarding performance, several concerns arise. Can the data- 
collection mechanism be implemented so that it is extremely efficient when 
disabled and relatively efficient when enabled? Is distributed data collection on 
a large multiprocessor feasible? How effective are the algebraic optimizations in 
practice, both relatively, in terms of increased performance, and absolutely, in 
terms of data packets per second processed? Can an evolving display specified 
declaratively be generated in real time ? To address these questions, we have 
completed one prototype implementation and have made significant progress 
toward a second implementation. These implementations have been instru- 
mented, and the bottlenecks identified. 

The system monitored by the prototype was Cm*, a tightly coupled multipro- 
cessor composed of 50 DEC LSI-11s (each a 0.3 MIP machine) and a substantial 
amount of memory [17, 20, 691. Two operating systems were available on Cm*: 
StarOS [19, 32, 331 and Medusa [53]. The Berkeley UNIX 4.2BSD operating 
system, running on either DEC Vaxes or Sun workstations, is the subject system 
of the second implementation. While Cm* and its operating systems are highly 
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decentralized and oriented toward research, the UNIX operating system is 
centralized and oriented toward providing a flexible program development envi- 
ronment. These differences are reflected in some aspects of their monitors. The 
two implementations were developed over several years at two institutions, 
Carnegie-Mellon University and the University of North Carolina; various col- 
lections of the modules have been integrated at different times. 

The monitor consists of two main components: a remote monitor, performing 
those functions requiring close interaction with the user, and a resident monitor, 
performing the functions requiring close interaction with the subject system. 
This separation is necessary when monitoring a distributed system, where a 
resident monitor exists at each processor, sending collected data to the centralized 
remote monitor, which may or may not execute on one of the processors being 
monitored. Functionally, the resident monitor collects the data packets and 
interacts with the operating system, and the remote monitor analyzes and 
displays the monitoring data. 

In both the prototype and the second implementation, the remote monitor ran 
on a Vax under UNIX and was itself composed of four modules. The TQuel 
compiler translated the query into an initial algebraic expression. The parse tree 
for this expression was termed an update network, referring to the tuples flowing 
across the arcs. The movement of tuples through this network was handled by 
the update network interpreter. The remote accountant handled the Ethernet 
protocol, sending tuples to the interpreter and sending commands to the resident 
monitor. The remote accountant is merged with the resident accountant in the 
second implementation, since both execute on the same machine. The display 
system mapped the derived tuples into graphical images on a Sun workstation. 

Three resident monitors were implemented, one on StarOS [63], one on Medusa 
[25], and one on UNIX [16]. The remote monitor on the Vax communicated with 
the resident monitor on Cm* over an Ethernet [47], a high bandwidth network. 

The implementation carried all aspects sufficiently far to demonstrate feasi- 
bility and to investigate efficiency aspects. More specifically, the sensor instal- 
lation component, the update network interpreter, the three resident monitors 
(the remote accountant, the TQuel parser and code generator, and the display 
system) are essentially complete. The TQuel semantic analysis phase was only 
partially implemented, and the optimization phase was designed but not imple- 
mented. The prototype showed that it is possible to partition the monitor into 
manageable components, interacting through well-defined interfaces. While 
much work would be required to make the monitor fully general and robust, the 
implementation was sufficiently complete to indicate that there were no insur- 
mountable problems in the way of a fully functional system. 

Several of the components were instrumented to determine the overall 
performance of the monitor. The rest of this section will briefly discuss the 
performance of the sensors, the Ethernet protocol, the update network inter- 
preter, and the display system. Details are given elsewhere [60, 631. 

The efficiency of the data-collection mechanism is important, for it determines 
the monitoring granularity, that is, the level of abstraction at which the moni- 
toring takes place. We will first examine the Cm* data-collection mechanisms, 
as they have been studied more thoroughly; the UNIX mechanism demonstrates 
the generality of the model and will be discussed shortly. 
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The Cm* data-collection mechanisms supported strong type checking, multiple 
type managers, and a high degree of filtering. Because both StarOS and Medusa 
are object-oriented operating systems, there was a natural fit between the data- 
collection model of typed entities and type managers. Space was allocated in each 
object to be monitored for a reference to an object containing the enable bits and 
a buffer for the data packets. The data packets were removed asynchronously 
from these buffers by the resident monitor. Allocating additional space for a 
32-bit reference was much easier than allocating space directly in each object for 
the buffer and allows the buffers to be shared among many objects. 

Several StarOS sensors were repeatedly invoked to determine their execution 
efficiency. Two versions of these sensors were studied. Inline code tested whether 
the event was enabled, and, if so, called a procedure to construct and store the 
data packet. The second version consisted totally of inline code. Both versions 
were implemented using existing microcoded operations for efficiency. As ex- 
pected, the code in the first version was smaller, requiring from 29 to 44 words, 
as compared with 41 to 96 words for the second version. However, since the 
procedure is itself 350 words long, inline expansion requires less space than 
procedure calls if there are less than about 20 sensors in the process. If no sensors 
were enabled for a process, the sensors (in both versions) took only 15 micro- 
seconds, equivalent to 2 store instructions on an LSI-11, representing the cost of 
installing sensors in a process and then never using them. If the transformations 
discussed in Section 8.6 are effective, only a small number of sensors will be 
enabled; most processes will have all their sensors disabled. If some sensors were 
enabled in the process, an additional check was required, and a disabled sensor 
took 165 microseconds, equivalent to 23 store operations. A microcoded version 
of the sensor would take approximately 90 microseconds in an equivalent situa- 
tion. An enabled inline sensor requires 600-1400 microseconds per invocation, 
depending on the amount of data stored in the data packet. This execution time 
is equivalent to 85-200 store instructions, or 6-14 procedure calls. Permanently 
enabled sensors are faster by about 150 microseconds. The procedure-call version, 
when enabled, requires 1850-2330 microseconds, 60-300 percent slower than 
the inline version. The reason the inline version is superior in both space and 
time is that the code for each sensor is generated automatically in the sensor 
installation step, and therefore can be customized to the specification of the 
sensor. Hence, the monitoring granularity for this implementation of sensors 
is larger than a procedure call, but perhaps equal to a procedure that does 
something interesting, in turn calling other procedures. Given this sensor 
efficiency, with intelligent filtering reducing the monitoring overhead to 
1 percent, the 50 processors would generate approximately 500 data packets 
per second. 

The UNIX sensors store the data packets in a single kernel-resident buffer, 
via a new system call if the sensor is in a user process, or directly if the sensor is 
in the kernel [ 161. The resident monitor is a user process that invokes a second 
option of the monitor system call to extract the data packets from the buffer and 
send them on to the remote monitor. The resident monitor is also responsible 
for enabling and disabling sensors in both the kernel and in user processes, 
through yet another option of the system call. 
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UNIX is not object oriented; the only identifiable object supported by UNIX 
is the file. However, the data-collection model can be applied to UNIX in an 
abstract fashion. There are several entity types, each corresponding to a data 
structure in the kernel: file (represented by an inode on disk or in memory), pipe 
(an entry in the pipe table), socket, device, etc. Each of these data structures 
must be expanded to include the enable flags. The flags can only be modified by 
the kernel, via a request from the resident monitor. The type manager, which is 
the performer for operations on entities of these types, is the kernel, arbitrarily 
assigned the process id 0. The entity identifier for the object is usually an index 
into the appropriate table (file identifiers and process identifiers are exceptions- 
they are stored within the table entry). At this point, only the file system of the 
kernel has been instrumented; adding new sensors is primarily a task of under- 
standing the code well enough to place the sensors correctly. 

Invoking the monitor system call for each data packet is necessary because the 
value of the clock is maintained in kernel space; lower performance is one result. 
The round-trip time for a system call varies across versions of UNIX and the 
hardware, but is currently at least 250 store instructions. Since the UNIX system 
is a single processor system (we have not yet extended data collection to function 
across several networked UNIX machines), the data packet generation rate is 
much lower than for Cm*: approximately 40 data packets per second, again 
assuming a monitoring overhead of 1 percent. 

A second concern is the feasibility of distributed data collection on a large 
multiprocessor such as Cm*. Data collection is divided between the sensor storing 
the data packet in a shared buffer, the resident monitor extracting the data 
packets from the buffer and assembling them into larger packets to be sent to 
the Vax, and the remote monitor receiving data from Cm* and passing it onto 
the update network interpreter. The sensor, resident accountant, and remote 
accountant all execute asynchronously on separate processors. Apart from the 
performance of the sensor, which was discussed above, the maximum sustainable 
transmission rate between the resident and remote monitors is another potential 
bottleneck in data collection. 

The Ethernet protocol is a variant of the Ethernet File Transfer Protocol 
(EFTP) [61], simulating a transmission from the resident monitor (the host) to 
the remote monitor (the slave). The protocol uses checksums, time-outs, and 
packet retransmission for reliability. Commands, such as “enable this sensor,” 
are incorporated into the protocol in acknowledgment packets [26]. Using the 
actual record and packet sizes and observing the transmission rate for the 
standard EFTP, a maximum transmission rate of 600 event records per second 
was calculated. This rate is adequate to handle the data being generated by the 
sensors. 

The execution of an optimized algebraic expression, generated from a declar- 
ative, calculus-based TQuel query, is yet another potential bottleneck. The 
efficacy of the optimizations and the performance of the update network inter- 
preter were measured using a small set of relatively complex TQuel queries. The 
initial update network, before optimizations were performed, could process ap- 
proximately 3 input tuples per second (assuming a dedicated Vax 11/760). Two 
stages of optimization were performed manually to assess their effect. The first 
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stage applied transformations from two of the five discussed in Section 8.6: 
traditional algebraic transformations and transformations that substitute a more 
efficient variant of an operation in the expression. To simulate the effect of the 
other optimizations, we manually enabled only the relevant sensors. The inter- 
preter was unchanged in the first stage. This stage resulted in a speedup of 5, to 
15 input tuples per second. The second stage involved substituting the interpreter 
and general operator algorithms with a LISP function. Conceptually, the entire 
algebraic expression was converted into a specialized operator. The LISP function 
was then compiled by the FranzLISP compiler into Vax assembly language. The 
resulting code could process approximately 600 input tuples per second, resulting 
in an improvement of more than two orders of magnitude. This rate is adequate 
to accommodate the tuples generated by Cm*. In the second implementation, we 
are reimplementing the TQuel compiler, optimizer, and update network inter- 
preter, and hope to obtain even higher tuple throughput. Initial indications are 
promising; the processing time per tuple has dropped by another factor of two. 

The final concern is that of display generation. As with the other components, 
the display system prototype emphasized ease of implementation over efficiency. 
In particular, the current system does not exploit the distinction between fixed, 
attribute-dependent, and time-dependent aspects; the entire graphical display is 
recomputed with each change. Nevertheless, measurements of the prototype 
indicate that it can accept between 17 and 25 tuples per second, for a fairly 
complex display (i.e., several times more complicated than that discussed in 
Section 7). This rate is in terms of derived tuples, which will usually be fewer in 
number than input tuples. On the other hand, the algebraic optimizations attempt 
to enable only the relevant sensors, so the ratio of output to input tuples is kept 
fairly high. This ratio is highly dependent on the queries specified by the user; 
we did not have an adequate collection of representative queries to arrive at a 
good estimate. If we are conservative and assume an equal number of input and 
output, then the display system is a factor of 20 too slow when used with Cm*; 
the performance is already in the ballpark when used with a single-processor 
UNIX system, due to the greatly reduced tuple generation rate. We have identi- 
fied many potential optimizations, and feel that a speedup of 20 is relatively 
straightforward. One other consideration is the speed at which the human visual 
system can process an evolving screen-perhaps that limitation will be reached 
first. 

The general result of these measurements is that, given the monitoring gran- 
ularity supported by this implementation, the monitor can indeed contend with 
the number of event records generated by the 50 processors in Cm*, with the 
exception of the current display system. Hence, it is possible to implement a 
monitor supporting the high-level conceptual viewpoint of a dynamic relational 
database on the system’s behavior, which can be specified using a nonprocedural 
temporal query language, with sufficient efficiency to monitor a large, complex, 
distributed system. 

10. CONCLUSION 

This paper has argued that the relational model provides an effective formaliza- 
tion of the information collected by a monitor. The relational approach presented 
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in this paper consists of the following five steps: 

Step 1: Sensor Configuration 
Sensors are specified in a sensor-description language as a collection of prim- 
itive event and interval relations. The user also specifies the way in which each 
sensor may be enabled, as well as the location of these sensors within the code 
of the subject system. Sensors and their enable flags are associated with entities 
based on a simple model of the environment. For many sensors, the enable 
flag is in the initiator or the target, decoupled from the performer in which the 
sensor itself resides. This declarative description forms the conceptual view 
that the dynamic behavior of the subject system is available as the collection 
of historical relations. The translator for this language automatically handles 
the details of generating the code for each sensor and communicating needed 
information to the monitor, thereby greatly reducing the chance for error. 

Step 2: Sensor Installation 
The code for the sensors is generated by the monitor. This step is entirely 
automatic, resulting in a fully instrumented subject system. Because sensors 
are generated by the monitor, there is the opportunity for automatically 
compensating for the monitoring artifact. 

Step 3: Analysis Specification 
TQuel queries are made on this fictional database. This language provides a 
powerful user interface for querying the monitor concerning the behavior of 
the system. 

Step 4: Display Specification 
At the same time, the user specifies the graphical representation of the derived 
relations. In the relational approach, displays are specified in a declarative 
fashion by associating graphical aspects with entities and relationships, for 
both primitive and derived relations. The iconic representation of entities and 
multiple time representations allow the user to visualize the derived relations 
in different ways. 

Step 5: Execution 
The queries are first converted into relational algebra expressions, which, are 
optimized through the application of a series of conventional and monitoring- 
specific transformations. Processing is started by enabling sensors associated 
with the primitive relations appearing in the expression. Our approach makes 
use of the CY operator and a collection of optimizations to determine precisely 
which sensors to enable. The monitor uses information from the sensor 
specification and the algebraic expression to automatically enable only relevant 
sensors. The entity identifier is used to locate the entities that contain the 
enable flags. Special techniques allow temporal ordering of data packets from 
multiple buffers. As tuples flow through the expressions, other sensors are 
enabled, thereby creating other tuple streams. The tuples flowing out of the 
expressions are displayed as directed by the user. 

The majority of work in monitoring has concerned the development and 
application of techniques within the context of the traditional approach [50, 511. 
In the remainder of this section, we examine other research that also addresses 
inadequacies of the traditional approach. 
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The basic idea behind the approach espoused here, using historical databases 
to formalize dynamic information, has been suggested in various guises by others 
[15, 18,38-40, 561. Relational databases have also recently been applied to other 
data managed by a programming environment [29, 30, 40, 411. High-level lan- 
guages for specifying the analysis to be performed by the monitor have also been 
proposed. Linton suggested using Quel, Garcia-Molina et al. suggested using 
Sequel, LeDoux and Parker used Prolog, and DiMaio, Ceri, and Reghizzi used 
Ada. Quel, Sequel, and Ada, because they have no natural way of expressing 
time-dependent queries, are inappropriate for this application. Prolog can be 
used to express time-dependent queries. Interval logic [23], regular expressions 
augmented with a shuffle operator [5], and path expressions [8] have also been 
suggested. 

There are several differences between these efforts and our approach. First, no 
one until now has dealt with the issue of sensor specification and automatic 
filtering. In most systems, only a fixed number of predefined sensors are usually 
provided (e.g., 14 in [38], 18 in [34], and 24 in [18]), implying that future users 
of the monitor will need only the information determined at the time the monitor 
was implemented. Such an approach unnecessarily limits the usability of the 
tool. 

We also feel that powerful filtering techniques, including those that enable and 
disable sensors based on previously received data, were absolutely vital in 
minimizing the number of generated data packets. Most systems permanently 
enable all sensors, or force each sensor to be enabled manually. We disagree with 
LeBlanc and Robbins, who assert that data on every event must be stored for 
later analysis for debugging distributed programs [37]. This requirement is 
unnecessarily restrictive when many (say, hundreds) sensors are present, and is 
usually impossible to satisfy in terms of computing and storage resources in a 
complex system. 

Second, none of these papers has applied the techniques of generating an 
initial algebraic expression, and then using transformations, both conventional 
and monitoring-specific, to increase the efficiency of this expression. As we saw 
in Section 8.6, these optimizations can be very effective. 

Third, no one has approached the display of monitoring information at a 
fundamental level. The papers that do address this issue (e.g., [23, 501) use ad 
hoc display algorithms that cannot be tailored by the user. We agree with several 
authors that a wide variety of different monitoring views and interpretations is 
needed, and that animated, graphical state displays provide a very effective form 
of dynamic documentation [34,58]. 

There are two major drawbacks of the approach proposed here. One problem 
is that the queries must be specified before the data are collected or processed. 
Because this constraint is placed on the ordering of the steps, the relevant sensors 
can be enabled automatically. The user, however, may not know a priori precisely 
what information is desired. Also, the user may want to replay the display, or 
vary the display rate, which is impossible if the data is not stored for later 
analysis. The solution is to couple the monitor with a historical DBMS [3, 41 to 
store the derived data. Ideally, there should be some way for the user to indicate 
with arbitrary precision the data to be collected. In this way, the monitor could 
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support activity at any point along the spectrum between traditional monitoring, 
where the data are first collected and then analyzed, and relational monitoring, 
where the query is specified before any data are collected. 

A second drawback is the monitor’s complexity. Included as components of 
the monitor are a TQuel compiler, a sensor-description language translator, a 
sophisticated query optimizer, an incremental algebraic interpreter, and an 
incremental display generator. While the relational model provides a coherent 
basis for all of these tools, we must acknowledge that, rather than reducing 
complexity, this approach generally shifts complexity from the user to the 
monitor, where it belongs. 

In summary, while other proposals have exhibited a few of the aspects of the 
approach discussed here, they have not exploited the power of the relational 
model in a comprehensive fashion, from sensor specification to querying, filtering, 
optimization, data generation, and graphical display. 

11. FUTURE WORK 

While the anticipated benefits of a relational approach to monitoring have been 
demonstrated, there are several areas where further work is needed. On the 
theoretical side, we are developing a formalization of the incremental temporal 
algebra discussed in Section 8.1 [45, 461. Such a formalization will be used to 

-ensure that the operators are well defined; 

-prove that the mapping from TQuel to the relational algebra is correct, using 
TQuel’s tuple calculus semantics [66]; 

-prove that the optimizations do not alter the semantics of the expression they 
are transforming; and 

-perhaps suggest further optimizations. 

Another area to be investigated is distributing the analysis. In monitoring a 
distributed system, the analysis generally occurs at a central node, with the data 
packets sent to this node from buffers in the processors where the sensors were 
located that generated the packets. However, much of the analysis could occur 
locally, with only that analysis requiring more global information being performed 
remotely. One possibility involves the concept from distributed databases of 
horizontal fragmentation, where a relation is broken into two or more subsets of 
tuples, the union of which is the original relation [9]. In distributed databases, 
each subset may be stored on a separate node. In the monitoring domain, each 
primitive relation can be fragmented on the attribute (i.e., the entity source) that 
specifies where the data packet is generated. The algebraic equivalents of queries 
on such relations may be duplicated for execution locally on each processor, with 
the resulting tuples sent to the central node, thereby reducing the load on the 
network. Optimizations that are not applicable at the central node may still apply 
to the expression when executed separately on the nodes producing the fragments. 
Exactly how and when this should be done is under study. 

Extensions to the data-collection mechanism should also be investigated. There 
remain open issues concerning sensor specification and filtering. It might be 
desirable to have the monitor play a greater part in sensor specification (e.g., 
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allow it to substitute sampling for tracing to lower the data-collection overhead) 
and sensor installation (e.g., allow it to install the sensors at execution time by 
using conventional breakpointing mechanisms). How this may be done is an open 
question. While the (Y operator conceptually could be coupled just as easily to 
hardware as to software, the actual mechanisms necessary to do so have not been 
developed. Also, if two or more sensors, with difference-enabling characteristics, 
have been specified for the same historical relation, the monitor can substitute 
in turn the respective cy operators for each sensor in the algebraic expression. 
After applying the optimizations to each expression, the most efficient version 
may be selected. Reasonable selection criteria need to be developed; the criteria 
used to choose among alternative processing strategies in conventional DBMSs 
should provide some guidance. We also want to incorporate data-collection 
techniques other than sampling and tracing into the (Y operator and its formali- 
zation, thereby precisely specifying these data-collection techniques. 

Finally, there are implementation issues that should be studied. The imple- 
mentations described in Section 9 demonstrated the feasibility of the relational 
approach. There is much work to be done to make the monitor a robust, reliable, 
efficient system; many of the details need to be worked out. For example, the 
prototype remote monitor cannot handle multiple LY operators that are associated 
with the same primitive relation yet given different values for their arguments. 
Multiple users of the monitor cannot be accommodated, and the interaction 
between the resident monitor and the user programs is awkward. The display 
system is slow and not well integrated with the rest of the monitor. It should 
also be extended to incrementally modify the display. The sensor and display 
specification languages are ad hoc. The optimization phase should be imple- 
mented, and its effectiveness studied. The remote monitor should be extended to 
permit communication with multiple resident monitors (e.g., by using remote 
procedure call [35]). Eventually, the relational monitor should be coupled with a 
suitable programming environment to form an integrated instrumentation 
environment [59]. 
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