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Trace Specifications: Methodology and Models 
DANIEL HOFFMAN, MEMBER, IEEE, A N D  RICHARD SNODGRASS 

Abstract-Precise abstract software specification is achievable by 
using formal specification languages. However, nontrivial specifica- 
tions are inordinately difficult to read and write. This paper summa- 
rizes the trace specification language and present? the trace specifica- 
tion methodology: a set of heuristics designed to make the reading and 
writing of complex specifications manageable. Also described is a tech- 
nique for constructing formal, executable models from specifications 
written using the methodology. These models are useful as proofs of 
specification consistency and as executable prototypes. Fully worked 
examples of the methodology and the model building technique are in- 
cluded. 

Index Terms-Formal specification, logic, prototype, software en- 
gineering. 

I. SPECIFICATION ISSUES 
N this paper, we present a set of heuristics that aid in I the writing of good specifications of complex modules. 

By specGCation we mean a precise description of the es- 
sential behavior of a software module. We wish to con- 
centrate on the correctness of the software and so we do 
not include speed or cost requirements in our specifica- 
tions. The specifications are expressed in the trace lan- 
guage, developed by Pamas and Bartussek and formalized 
by McLean [2], [18]. In the remainder of this section, we 
discuss the role of specifications in software develop- 
ment. 

We envision our specification technique as a designer’s 
tool, as discussed by Parnas [20], [2 11. Nearly every soft- 
ware design methodology is based on the decomposition 
of large, complex modules into smaller, simpler ones. 
Then each module can be dealt with separately, often han- 
dled by different people or teams. Each module can be 
further decomposed, or, if it is simple enough, imple- 
mented directly. If the modules are to cooperate success- 
fully at system integration time, then their specifications 
must be clearly understood. A module M ’ s  specification 
must be understood by both the implementors of M and 
the implementors of every module that uses M .  Thus, it 
is crucial to precisely and completely record the specifi- 
cations of each module. 

Specifications can also support the design process 
through design verification. Testing is used to detect de- 
sign errors as they appear in an implementation. We would 
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like to detect design errors before the design is imple- 
mented, and avoid the cost of changes to the implemen- 
tation resulting from late detection of design errors. With- 
out precise specifications it is difficult to verify the 
correctness of a decomposition. Formal specifications, 
written in a language with a formal syntax and semantics, 
have two important advantages over informal specifica- 
tions. First, formal specifications avoid the ambiguity and 
imprecision inherent in prose, and second, formal speci- 
fications are machine processable, crucial for specifica- 
tion verification. Abstract specifications are written solely 
in terms of the observable behavior of the module. In con- 
trast, operational specifications are written in terms of a 
program, usually written in some procedural language, 
that performs the desired task [ 11. We favor abstract spec- 
ifications because they focus attention on the require- 
ments of each module (its specification) as opposed to the 
method used to fulfill those requirements (its implemen- 
tation). The advantages of abstract specifications have 
been discussed in more detail elsewhere [2], [9], [18]. 

The remainder of this paper is divided into five sec- 
tions. Section I1 describes the trace language and Section 
I11 the trace specification methodology. Section IV de- 
fines trace models and illustrates their use. Section V 
compares the trace and algebraic specification methods 
and Section VI presents our conclusions. 

11. THE TRACE LANGUAGE 
In this section we describe the trace language, demon- 

strate it in several examples and argue the need for a spec- 
ification methodology. 

A .  Basic Elements 
Traces are a technique invented by Parnas and Bartus- 

sek for the formal and abstract specification of software 
modules [2]. McLean continued their work by establish- 
ing a formal basis for traces, including a formal syntax 
and semantics, a derivation system, and completeness and 
soundness results [ 181. In a trace specification, a mod- 
ule’s behavior is described in terms of procedure or func- 
tion calls and retum values from those calls. Following 
McLean’s description, modules are specified by describ- 
ing three properties they must possess: 

1)  What are the names of the module’s access proce- 
dures and functions, and what are their parameter and re- 
turn value types, if any? These properties are described 
by syntax sentences of the form: 

0098-558~/88/0900- l243$01 .OO O 1988 IEEE 
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2) Which series of procedure calls, termed traces, are 
legal, i.e., are not regarded as being in error? These are 
indicated by semantic assertions of the form L (trace).  
The behavior of the module in response to illegal trace is 
undefined. 

3) What is the output of a legal trace that ends in a 
function call? This value is denoted by semantic asser- 
tions of the form V(trace)  = value. 

Trace specifications also contain symbols from predi- 
cate calculus. In particular -, and * are used for i f  then 
and ij‘ and only ij’, respectively. The connectives 1, &, 
and 1 are used for not, and, and or, respectively, as well 
as the existential quantifier (3a) for there exists a, the 
universal quantifier ( V a  ) for for all a, and the compari- 
son operators < , I, =, # , I, > . Operator precedence 
is as follows: 

highest = < I = # 1 > (= defined below) 
1 

6k - I  
lowest --t ++ 

The dot (.)  concatenates procedure calls, e denotes the 
empty trace, and comments are delimited by / * and */. 

In order to make specifications more readable, the fol- 
lowing abbreviation is used. If two traces, TI and T2, agree 
on legality and return value with respect to future module 
behavior, then we say they are equivalent and write T,  = 
T2.  More precisely, any two traces TI and T2 are equiva- 
lent if 

(VT) (( L(TI.  T )  * L(T2. TI )  & 
( (Tis  not empty) -, ( 

( TI. T has a value * T2. T has a value) & 
((TI . T has a value) 4 V (  TI. T )  = V (  T2. T ) ) ) ) )  

We also assume that any prefix of a legal trace is legal. 
More formally: 

(VS,T)  ( L ( S . T )  -+ L ( S ) ) .  

B. A Stack Specijication 
Consider the specification of a stack module (taken from 

McLean [ 181) that contains three procedures: push takes 
an integer parameter and returns no value; pop neither 
takes a parameter nor returns a value; and top takes no 
parameter and returns an integer value. The full specifi- 
cation is shown in Fig. 1.  

The semantics of the module consists of five assertions 
describing the module’s behavior: 

1) If a trace has not resulted in an error, then push can 
be legally called with any integer parameter (the stack is 
unbounded). 

2) Calling top will not result in an error if and only if 
calling pop does not (the stack must be nonempty). 

3 )  Calling push followed by pop will not affect the 
future behavior of the module (pop cancels push). 

4) If top can be legally called, then calling it will not 
affect the future behavior of the module (top does not af- 
fect the “internal state” of the module). 

5 )  The value of any legal trace ending in push followed 
by top is the parameter of that push. 

NAME 
stack 

SYNTAX 
push: integer; 
POP: ; 
top: - integer; 

SEMANTICS 
/*1*/ ( V T,i) (L(T) - L(T.push(i))) 

/*2*/ ( V  T) (L(T.top) * L(T.pop)) 

/*3*/ 

/*4*/ 

/*5*/ 

( V T,i) (T = T.push(i).pop) 

( V T) (L(T.top) + T E T.top) 

( V T,i) (L(T) -+ V(T.push(i).top) = i) 

Fig. 1. Stack specification. 

We claim that this specification captures the essence of 
an unbounded integer stack. For example, to find the value 
of a legal trace ending in top, we apply assertions 3 and 
4 to remove all pop and top calls, respectively, and then 
apply assertion 5 to provide the value desired. 

C. A Queue Specijication 
Fig. 2 shows a trace specification of an unbounded in- 

teger queue taken from Parnas and Bartussek [2]. Note 
that while the stack and queue syntax sections are very 
similar, their semantic sections are quite different. Infor- 
mally, the semantics assertions state that: 

(1-3) Traces which consist of any number of add calls 
are legal. A remove orfront call is also permitted, if that 
call is preceded directly by an add. 

(4-6) There are other legal traces. Afront call has no 
effect on the future behavior of the module. The sequence 
add.remove may be replaced by remove.add or, if it oc- 
curs at the start of a trace, deleted. 

(7, 8) These assertions show the value of front for a 
queue of length one and a queue of length greater than 
one. 

To find the value of a legal trace containing removes 
and ending in front, we repeatedly apply assertion 5 ,  
shifting the remove left until it is beside the first add, then 
apply assertion 6 ,  deleting the remove-add pair. This pro- 
cess is repeated until we have an equivalent trace that does 
not contain a remove. We then apply assertion 8 to deter- 
mine the value returned by front. 

D. More Complex Specijications 
We have shown how traces can be used to write com- 

pact and fairly readable stack and queue specifications. 
Yet, when we attempted specifications of larger, more 
complex modules, difficulties arose. Previously devel- 
oped trace specifications were short, rarely more than 25 
lines long. Hence difficulties in scaling were not apparent 
in these specifications. Due to the complexity of the mod- 
ules we were specifying, much longer specifications were 
necessary. The assertions in the semantics section quickly 
became large and unintelligible. We were often unable to 
determine whether a specification contained assertions that 
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NAME 
queue 

SYNTAX 
add: integer; 
remove: ; 
front: + integer; 

SEMANTICS 
/*I*/ ( V T,i) (L(T) -+ L(T.add(i))) 

/*2*/ ( V T,i) (L(T) -+ L(T.add(i).remove)) 

/*3*/ ( V T) (L(T.remove) t+ L(T.front)) 

/*4*/ ( V T)  (L(T.front) -+ T.front T) 

/ * 5 * /  ( V T,i) (L(T.remove) + 

T.add(i).remove T.remove.add(i)) 

/ * 6 * /  ( V i) (add(i).remove e) 

/*7*/ ( V i)  (V(add(i).front) = i) 

/*8*/ ( V T,i) (L(T.front) -+ V(T.add(i).front) = V(T.front)) 

Fig. 2. Queue specification. 

Heuristic-Structure the Semantics According to Nor- 

Given a normal form, we may express module be- 
havior for all traces in terms of module behavior for 
just the normal form traces. Specifically, we base 
the semantics assertions on traces of the form T.C,  
where Tis normal form and C is a single call. Then, 
for each call C: 

mal Form Prejixes: 

State whether T. C is legal. 
If T.C is legal then 

If T.C is not normal form then provide a normal 
form trace TNF where TNF = T. C 

If C is a function call, specify I/ (T. C) . 

were mutually contradictory or whether the specification 
completely characterized the behavior of the module. 
Small changes to the desired characteristics of a module 
resulted in disturbingly large changes to the specification. 
These experiences motivated us to develop a trace speci- 
fication methodology consisting of a set of five heuristics 
designed to make the writing of large trace specifications 
manageable. 

111. THE TRACE SPECIFICATION METHODOLOGY 
In this section we present the trace specification meth- 

odology and illustrate it on new stack and queue specifi- 
cations, and on a more complex example, a traversing 
stack specification. The first step in developing a trace 
specification is writing the syntax section. Then, using the 
heuristics described below, we write the semantics sec- 
tion, transforming our informal notions of correct module 
behavior into assertions about trace legality, equivalence 
and value. 

Heuristic-Base the Specification on a Normal Form. 

A normal form is a representative subset of the 
legal traces. For a given specification S, consider the 
trace relation “ = ”, and the set TL of all legal traces. 
It follows from the definition of “ = ” (in Section 
11-A) that it is an equivalence relation and so parti- 
tions TL into a set of equivalence classes. We require 
that a normal form for S contain at least one trace 
from each of the equivalence classes. A normal form 
is “representative” in the sense that, for any legal 
trace T, there is a normal form trace TNF equivalent 
to T. For any specification, the set TL is itself a nor- 
mal form. Typically, specifications have an infinite 
number of normal forms, most of which are unin- 
teresting. We choose a normal form which is simple 
to describe and which makes the next heuristic easy 
to apply. 

Using this heuristic helps ensure that the legality 
and value of every trace is specified. 

Heuristic- Use Predicates: 

Using the trace language, define predicates and 
functions on traces. Use these to decompose a single 
complex assertion into simpler assertions, much as 
procedures are used in programming languages. 
Usually a predicate on traces is defined which is true 
for exactly those traces in the normal form. 

The remaining two heuristics are not easily demon- 
strated on small examples and so are described only briefly 
here (but in detail elsewhere [ 131, [ 141). 

Heuristic-Develop Specifications Incrementally: 

Develop a specification for a complex module as a 
series of specifications, beginning with a specifica- 
tion for a much simpler module and culminating with 
the full specification. 

Heuristic- Use Macros to Hide Record Structure: 

Especially in protocol specifications (see Section III- 
D), macros can be used effectively to hide the com- 
plex record structure of the messages passed be- 
tween modules. 

We present three functions, informally defined in Fig. 
3, to provide information about traces and domain vari- 
ables and to make certain logical constructions more con- 
venient (see [13] for formal definitions). Individual ap- 
plications may also define additional functions; those 
described here are of general use. 

A. A New Stack Specification 
We now illustrate the built-in functions and heuristics 

just described by respecifying the stack module (see Fig. 
4). We choose the stack normal form to be the set of traces 
consisting solely of push calls. Although there are an in- 
finite number of possible normal forms for this module, 
our choice is attractive because there is a natural corre- 
spondence between a sequence of push calls and our con- 
ception of the contents of the stack. We write the nor- 
malform predicate in the PREDICATES section and then 
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l eng th  (7‘) NAhZIS 
length ( T )  - n i f  and o d y  if n is the  number of ca l l s  of any 
name in T .  l e n g t h  ( p u s h  ( I ) . p o p . p u s h  ( ? ) . p o p  ) = 1 is t ruc  

queue 

S\T\ITiLY 
counl(c , T )  add: integer; 

count(c , T )  = n i f  and only if T has n calls ~ i t l i  nanie c 
count(pop , push (l).pop.push ( 5 ) . p o p  ) = 2 is true. 

remove: ; 
front: - integer, 

p r e f i d s ,  T)  
prefiz(S, T) is true if  and only if  S is a prefix of T 
prefi4push ( I ) ,  push (1)) and 
prefidpush ( l ) ,  push ( I ) . p u s h  (2))) are both true. 

Fig. 3 .  Builtin functions. 

NAhlE 
stack 

SYNTAX 
push: integer; 
pop: ; 
top: -+ integer; 

PREDICATES 
norrnalforrn(T) et length(T) = count(push,T) 

smwrics  
( V T,C) (norrnalform(T) & length(C) = 1 -t 

( V i) ( C  = push(i) - 
/*L*/ L(T.C) 

( C  = pop -t 

) &  
(C = Lop + 

/*L*/ 
/*E*/ 

(L(T.C) ++ T # e) & 
(L(T.C) - ( V  T1,i) (T = Tl.pusli(i) - T.C T l ) )  

/*L*/ (L(T.C) c-t T # e) & 
(L(T.C) - 

/*E*/ T.C E T  & 
/*V*/ ( V Tl,i)  (T = Tl.push(i) ---* V(T.C) = i)) 
) 

1 
Fig. 4. New stack specification 

use this predicate to structure the SEMANTICS section. 
For a trace not in normal form, the equivalence clauses 

PREDICATES 
normalform(T) c-t length(T) = count(sdd,l’) 

SEMANTICS 
( V T , C )  (normalform(T) k length(C) = 1 + 

( V i)(C = add(i) - 
/*L*/ L(T.C) 

(C = remove - 
/*I,*/ 
/*E*/ 

(C = front - 
/*L*/ 

/*E*/ T.C G T B 
/*V*/ 

(L(T.C) fi T # e) & 
(L(T.C) -+ ( V T1,i) (T = add(i).Tl -+ T.C TI)) 

(L(T.C) ++ T # e) & 
(L(T.C) -+ 

( V T1,i) (T = add(i).Tl -+ \.(T.C) = i ) )  
1 

1 
Fig. 5 .  New queue specification. 

obvious association between push, pop, and top, and add, 
remove, and front, respectively. 

The new specifications differ in only two lines: 
In the equivalence section, pop differs from remove: 

pop eliminates the newest (rightmost) push while remove 
eliminates the oldest (leftmost) add. 

In the value section, top differs from front: top re- 
turns the parameter from the newest (rightmost) push 
while front returns the parameter from the oldest (left- 
most) add. 

In contrast, the original stack and queue specifications 
(see Fig. 1 and 2) are quite dissimilar, and mask the single 
essential difference between stack and queue behavior. 

may be used to reduce it to normal form, by eliminating 
top calls and push-pop pairs. For eachpush, pop, and top 
call, we write assertions describing the legality ( /  *L*/ ), 
equivalence (/*E*/),  and value ( / * V * / )  of a single oc- 
currence Of that when preceded by a normal form 

tion states that top is legal exactly when the stack is 
nonempty, that top has no effect on the future behavior of 
the module, and that top returns the value most recently 

specification shown in Fig. 1, it is just as comprehensible. 
Additionally, it is easier to see that the assertions are or- 
thogonal and express all desired legality, equivalence and 
value constraints. 

c. A Traversing Stack Spec$cation 
In this section we present a more complex example, a 

traversing stack (tstack), to illustrate the power of the 
methodology. As in the stuck module, tstack permits new 
elements to be added or deleted only at the top of the 

below the top of the stack. The module syntax is shown 
in Fig. 6. Informally, the semantics are as follows. If no 
calls to down or to-top are made, then push, pop, and 

rap, respectively. Down the next lower element to 
become the one returned by current, and to-top causes 
the element on the top of the stack to be returned by cur- 
rent. Push and p o p  are illegal unless the current element 

trace. For consider the The ’pecifica- stack. However, tstack provides read to elements 

pushed. this ‘pecification is longer than the stack current operate exactly as do the standard push, pop, and 

. .  - 
is the top element. Pop, down, and current are illegal if 
the stack is empty. Down is also illegal if there is no ele- 
ment below the current one. 

We choose the normal form to be any number N ofpush 
calls followed by fewer than N down calls. We have thus 

B. A New Queue Specijcation 
In this section, we use the methodology as a tool to 

write a new queue specification, shown in Fig. 5 ,  in the 
same manner as for the new stack specification. Note the 
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S\T\ITAX 
push: integer; 
pop: ; 
down: ; 
current: - integer; 
to-top: ; 

Fig. 6 .  Traversing stack syntax. 

PREDICATES 
norrnalforrn(T) * ( 3  P,D) ( T  = e I 

( T  = P.D & all(push,P) C all(down,D) & length(I‘) > length(D))) 

parse(Tl,Cl,T2,D) t+ (TI.Cl.T”.D = e I 
(all(push,Tl.Cl.T2) C all(down,D) & 
length(C1) = 1 & length(T2) = length(D))) 

all(C,T) c-* count(C,T) = length(T) 

Fig. 7 .  Traversing stack predicates. 

combined the stack normal form, representing the stack 
contents, with a sequence of down calls, representing the 
position of the current element. For example, for the stack 
contents 

4 
3 
2 + current element 
1 

the corresponding normal form trace is 

push (1) .push (2) .push (3) .push (4). down. down 

The normalform predicate is shown in Fig. 7 and makes 
use of the simple predicate all. 

In the tstack semantics, we use the parse predicate to 
split a normal form trace into the following four parts: 

T I :  the push calls associated with those elements be- 

C 1 : the push call associated with the current element. 
T2: the push calls associated with those elements above 

D: the down calls. 

low the current element. 

the current element. 

For example, for the normal form trace just considered 

TI = p u s h ( l ) ,  C1 = push(2), 
T2 = push(3).push(4), D = down.down 

The parse predicate (see Fig. 7) expresses this structure. 
By providing easy access to the “current push” and the 
sequence of down calls in a normal form trace, the parse 
predicate makes the semantics shorter and easier to write 
and read. The result is a semantics section (see Fig. 8) 
that is quite similar to that of stack. 

D. Specijication Experience 
In addition to the modules presented in this paper, the 

trace specification methodology has been used to re- 
specify all five modules (stack and queue are the first two) 
originally specified by Parnas and Bartussek [2], and var- 
ious other modules, including a relatively complex graph 

SEMANTICS 
( b! T,C) (norrnalforrn(T) S: length(C) = 1 - 
( V Tl ,Cl ,T? ,D)  (T = T1.CI.TO.D S: parse(TI,Cl,TS,D) - 

( V i)  (C = push(i) - 
/*L*/ L(T.C) t i  D = e 
) &  
(C = pop --+ 

) &  

) &  

/*L*/ (L(T.C) D = e S: C I  # e) S: 
/*E*/ (L(T.C) - T.C T1) 

(C = down --+ 

/*L*/ L(T.C) ct normal-form(T.C) 

(C = current - 
/*L*/ (L(T.C) t-t C1 # e )  S: 

L(T.C) - ( 
/*E*/ T .C E T & 
/*V*/ ( b! i) (Cl  = push(i) - V(T.C) = i ) )  
) &  
(C = to-top + 

1 

/*L*/ L(T.C) C 
/*E*/ (L(T.C) -+ T.C E TI.CI.T2) 

)) 

traversal 

Fig. 8. Traversing stack semantics. 

module. Also, significant experience has been 
gained writing communications protocol specifications. 
This work is described in detail elsewhere [13], [14]. 

IV. TRACE MODELS 
In this section we describe McLean’s work on models 

of trace specifications and present a method for writing 
models in Lisp from specifications written using the meth- 
odology described in Section 111. 

A .  McLean Models 
A model for a trace specification consists of a tuple D 

of domains and an interpretation function I that assigns 
to each meaningful element of the trace language an ele- 
ment of a domain of D [ 181. The domains in the tuple D 
are sets of values, such as the integers or the set of all 
strings on some alphabet. Meaningful elements of the 
trace language include the predicate L and the function V .  
We say that a specification is consistent if it is impossible 
to derive a contradiction from its assertions. McLean pro- 
vides a formal definition of model, shows that a trace 
specification is consistent if and only if it has a model, 
and proposes model-building as the preferred method for 
proving the consistency of a trace specification. 

McLean presents models for two modules, variants of 
the stack and queue modules discussed above. For the 
purposes of this paper, two aspects of the model are of 
interest: 1 )  the domain, in the tuple D, corresponding to 
traces, and 2) I (  L ) and I (  V ) ,  the interpretations assigned 
to the predicates L and V ,  respectively. In McLean’s stack 
model, the trace domain consists of the set of all character 
strings corresponding in the obvious way to sequences of 
calls. For example, the string “push (6).top.pop”, which 
is a trace domain element, corresponds to the trace 
push(6).top.pop. Definitions for I ( L )  and I (  V )  are based 
on a simple algorithm, expressed in pseudocode. The al- 

11 ii r 



1248 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 14, NO. 9, SEPTEMBER 1988 

gorithm, particular to this model, takes a trace T and re- 
moves top calls and matching push and pop calls, trans- 
forming T into an equivalent trace TNF containing only 
push calls. (Z(L )) ( T )  is defined to be true if and only if 
T can be so transformed, and ( I  ( V ) )  ( ‘IT. top ”) is defined 
to be the value pushed by the last call in TNF. 

For trace specifications written in an ad hoc fashion, 
models must also be constructed ad hoc. Considerable in- 
sight into each specification is required to produce nor- 
malization algorithms of the type described above. How- 
ever, for specifications written using the trace 
methodology, models can be constructed manually in a 
straightforward fashion, converting the specification one 
line at a time. Insight into the meaning of each specifi- 
cation is therefore unnecessary (and perhaps undesirable!) 
for the model builder. Below, we motivate our choice of 
modeling language, describe the conversion from speci- 
fication to model and present three examples. 

B. Lisp Models 
We have chosen to write in Lisp [ 2 3 ] ,  for the following 

reasons: 
Since Lisp is a formal language, a Lisp model is for- 

mal, avoiding the vagueness of prose or pseudocode. 
Since Lisp is a programming language, a Lisp model 

is directly executable (though perhaps inefficiently). All 
the Lisp code presented in this paper has been run and 
tested. 

Traces are naturally represented as lists and lists are 
easily manipulated in Lisp. 

Lisp-based automatic theorem proving is available to 
assist in proving assertions about Lisp models [ 3 ] .  

For those unfamiliar with Lisp, the text should still be 
comprehensible, but the code in the Appendix may not. 
Note that a fixed width font is used for all Lisp objects. 

Lisp models can constructed in a straightforward man- 
ner from specifications written using the trace specifica- 
tion methodology. For the trace domain we use Lisp lists. 
In the model, a trace is a (possibly empty) list of calls and 
a call is a (nonempty) list consisting of a procedure or 
function name followed by actual parameters of the ap- 
propriate number and type. For example, the trace 
push ( l ) .push (2) .pop .  top becomes, in the model ( (push 
1 )  (push 2) (pop) ( t o p ) ) .  We define Z(L) and Z ( V )  
using the Lisp functions L and V, respectively. L takes a 
trace parameter T and returns true or false, according to 
whether T is legal or not. V takes a trace parameter T, 
assumed to be legal and ending in a function call, and 
returns V (  T ) .  Having expressed L and V in terms of trace 
models, we describe how to implement them to represent 
a model for a given trace specification. 

Our trace specifications are expressed in terms of the 
legality, equivalence, and value of a single “new” call 
C, following a normal form “history” T. We imitate this 
structure in our Lisp models by writing functions Ip, nf ,  
and v, each taking T and C as parameters. Ip returns true 
or false according to whether T.C is legal, nf returns a 
normal form trace equivalent to T.C ,  and v returns 

V ( T . C ) .  One problem remains: Ip, nf,  and v operate only 
on normal form traces, while L and V must also handle 
traces not in normal form. Our solution is the function 
nfdriver, that recursively applies Ip and nf to detect an 
illegal trace and transform a legal one into its normal form 
equivalent. The functions L, V and nfdriver, together 
with several utility functions, are shown in the Appendix 
under ‘‘Model Independent Functions. ” These functions 
are the same for all models we have written. The Ip, nf, 
and v functions are different for each model; versions for 
stack and tstack are presented below. 

Throughout the remainder of Section IV, we follow the 
convention that t r ,  nftr, and c are Lisp variables repre- 
senting traces, normal form traces, and traces of length 
one, respectively. Note that, in Lisp, ’t represents logical 
true and nil logical false. When writing the model specific 
functions, we choose Lisp constructions that follow the 
specification as closely as possible, even when significant 
time or space inefficiencies result and could be avoided 
by ‘‘clever programming. ” Thus, we emphasize confi- 
dence in model correctness rather than model efficiency. 
When appropriate, the Lisp model could be improved, or 
translated to a more efficient language. 

C. A Stack Model 
The Ip, nf ,  and v functions (Appendix-“Stack Func- 

tions”) are derived directly from the stack specification 
of Fig. 4. Ip is generated from the lines dealing with le- 
gality (labeled /*L*/); nf is generated from the lines 
dealing with equivalence (labeled /*E*/);  and v is gen- 
erated from the lines dealing with value (labeled / *V*/). 
We illustrate the operation of the stack model by listing 
the nfdriver calls and actual parameters that result from 
a call to L .  If we execute 

(L ’ ( (push 1)  (push 2) (pop) (top) 1 1 
then the nfdriver calls will be 

(nfdriver nil ( (push 1)  (push 2) (pop) (top) 1 )  
(nfdriver ( (push 1)  1 ( (push 2) (pop) (top) 1 )  
(nfdriver ( (push 1) (push 2) 1 ( (pop) (top) 1 )  
(nfdriver ( (push 1) 1 ( (top) 1 )  
(nfdriver ( (push 1 ) )  nil) 

and the nfdriver call invoked directly by L will return ‘t ,  
indicating that push ( l ) .push (2) .pop .  top is a legal trace. 
If, however, we execute 

(L ’( (push 1)  (pop) (top) 1 )  
then the nfdriver calls will be 

(nfdriver nil ( (push 1)  (pop) (top) ) ) 
(nfdriver ( (push 1)  1 ( (pop) (top) 1 )  

UP nil ( (top) 1 )  

The last nfdriver call shown will call 

and Ip will return nil, causing nfdriver to return ’error, 
indicating that push ( l ) .pop .  fop is an illegal trace. Calls 
to V are handled in a similar fashion, except that only the 



HOFFMAN A N D  SNODGRASS: TRACE SPECIFICATIONS I249 

head of the trace is transformed to normal form and then 
this normal form trace and the ta i l  of the original trace 
are passed to v .  For example, ( V  ’ ( (push l ) ( p u s h  
2) (pop) (top) 1 ) will return 1 . 

D. A Traversing Stack Model 
The stack and tstack specifications are quite similar ex- 

cept for the presence of the parse predicate in the latter. 
Appropriately, the two models are similar except for the 
parse function in the tstack model. In the specification, 
the parse predicate is used to assert that if a trace T is 
divided into the subtraces T1,  C1, T 2 ,  and D ,  then certain 
assertions hold on the subtraces. In the model, the parse 
function takes the parameter nftr and finds the four sub- 
traces, so that new traces can be constructed from them. 
The fact that specifications assert constraints on traces and 
models search for traces to fit those constraints clearly 
characterizes the difference between our specifications and 
models. 

The parse function (Appendix-“Traversing Stack 
Parse Function”) is implemented using two other func- 
tions. Subtrace takes the parameters, tr, s, and I and 
returns the subtrace of tr starting at position s and I calls 
in length. The count Lisp function operates identically 
to the count function built into the specification language. 
With these two functions, parse is quite simple to imple- 
ment: by using count to determine the number of down 
calls, the four subtraces are easily extracted with sub- 
trace. With parse available, the Ip, nf, and v functions 
(Appendix-“Traversing Stack Functions”) are coded di- 
rectly from the specification. Essentially, the tstack 
model is just the stack model with calls to the parse 
function added. 

E. Spec$cations, Models, and Totalness 
One of the strengths of the trace approach is that models 

and specifications are distinct, while model-based speci- 
fication methods blur or eliminate this distinction. This 
section introduces the term total and presents a nontotal 
specification and one of its models. 

A specification is total if, for each legal trace ending in 
a function call, exactly one value for the trace can be de- 
rived from the specification [ 181. As noted before, a spec- 
ification is consistent if it has a model. If it is both con- 
sistent and total, it has at least one model and all of its 
models behave identically (with respect to function call 
return values). If it is consistent and nontotal, it has 
models with different behavior. The three specifications 
presented above are total. We now present an example of 
a nontotal specification. 

The unique module provides unique integers for such 
applications as automatic file or variable naming. Unique 
supports the single call getint, which takes no parameters 
and returns an integer value. Any value is acceptable, as 
long as it has not been returned by a previous getint call. 
In the specification (see Fig. 9), we choose the normal 
form to be all traces: no other choice is possible. The 
semantics section is straightforward. T. getint is always 

NAME 
unique 

SYNTAX 
getint: + integer; 

PREDICATES 
normalform(T) t+ true 

SEMANTICS 
( V T,C) (normalform(T) & length(C) = 1 + 

(C = getint -+ 

/*V*/ (L(T.C) + ( V  T1) (prefix(T1,T) + V(T1) # V(T.C))) 
/*L*/ L(T.C) & 

1 
1 

Fig. 9. Unique specification 

legal and getint always returns a “new” value. No equiv- 
alence assertion is needed because T.getint is always nor- 
mal form itself. 

In our unique model (Appendix-‘ ‘Unique Model”), 
the first getint call returns one and each successive call 
returns one greater than the previous call, via the length 
function call in v .  Infinitely many other choices are avail- 
able. For example we may redefine v as 

(defun v (nftr c) (plus (length nftr) K 1 )  

where K is any integer constant other than 0. The result 
is a model of the specification that behaves differently 
from that of Fig. 13, returning K ,  K + 1, * * instead of 
0 ,  1 ,  * * .  

F. Other Models 
Using the approach described above, we have written 

Lisp models (and hence, consistency proofs by construc- 
tion) for all the examples in the original traces paper [ 2 ] .  
Of the last example in that paper, Parnas and Bartussek 
say “demonstration of consistency is more complex . . . 
such a proof is beyond the scope of this paper . . . ” [2] .  

V. A COMPARISON: TRACE AND ALGEBRAIC 
SPECIFICATIONS 

The algebraic specification method is a well-known 
technique for formal software specification [8], [9], [ 111. 
A comparison between the trace and algebraic methods 
provides insight into the strengths and weaknesses of each. 

We begin by noting that the two methods are similar in 
three important ways. First the goal of both methods is 
the same: the implementation-independent specification 
of a software module in terms of calls and return values. 
Second, both the trace and algebraic methods have solid 
formal foundations, the former based on first order logic 
and the latter on heterogeneous algebra. And third, both 
methods are in fact “algebraic,” because first order logic 
is a cylindric algebra [ 181. 

The most important difference between the two meth- 
ods is that algebraic specifications are based on the type 
of interest, while trace specifications are based on call se- 
quences. For a module where the type of interest is not 
observable to its users (which is the case for all the mod- 
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ules specified in this paper) an algebraic specification must 
be written in terms of objects not visible to the module's 
users. We see this as a fundamental weakness in the al- 
gebraic approach. Consider an algebraic specification of 
the stack module (Appendix-' 'Algebraic Stack Specifi- 
cation"). The push call must take a stack parameter and 
return a stack value. The specification must contain a 
newstack call returning an "empty stack." And, the spec- 
ification provides no representation for the sequence of 
events represented by the trace push ( l ) . t op .  top [ 1 E]. The 
obvious choice of top (top (push (newstack, 1) ) ) is not 
available because the inner top returns 1 while the outer 
top requires a parameter of type stack. The trace method 
does not have these problems: the type of interest can be 
made visible or not, according to the specifier's inten- 
tions. 

We see three other weaknesses of the algebraic method, 
relative to traces. First, many algebraic specifications re- 
quire "hidden functions": calls (in addition to calls such 
as newstack) that are not visible to the module user but 
are essential to express the semantics of the visible oper- 
ations. For example, the tstack module cannot be speci- 
fied without hidden functions. In fact, early tstack speci- 
fication attempts generated heated debate as to whether an 
injnire number of algebraic axioms were required [15]- 
[17]! We have not used and see no reason to use hidden 
functions in trace specifications. Second, we see no way 
to extend the algebraic method to specify interprocess 
communication. While published research describes al- 
gebraic specification of communications protocols [22], 
this work makes heavy use of explicit state variables and 
so is not algebraic in the standard sense. However, traces 
extend naturally to handle interprocess communication 
[13, 141. Finally, algebraic specifications do not permit 
existential quantification: all variables are assumed to be 
universally quantified. As a result, there appears to be no 
algebraic specification for modules such as unique [ 181. 

On the other hand, while the application of the trace 
method is relatively limited thus far, there has been con- 
siderable experience with algebraic specification [4], [7], 
[IO]. Also, algebraic specifications appear to be more 
suitable for machine processing, and even compilation, 
than trace specifications. Among the support software al- 
ready implemented is the AFFIRM theorem prover [ 121. 
Finally, languages such as HOPE [5] provide program- 
ming languages very close in appearance to algebraic 
specifications. A the present time, support software for 
the trace methodology has not been developed. 

VI. CONCLUSIONS 
The specification methodology described in this paper 

is important because it makes the trace language signifi- 
cantly more useful. The methodology makes trace speci- 
fications easier to read, write, and change, and provides 
insight into the similarities and differences between mod- 
ules. Recent specification of complex communications 
protocols depended heavily on the methodology and in- 
creased our confidence in its value. Finally, the method- 

ology supports the straightforward building of models 
which serve as consistency proofs and executable proto- 
types. 

Concerning model building, there are several areas 
where more work is needed. Currently the Ip, nf, and v 
functions are coded manually. By referring to the trace 
specification, this is a straightforward task. We would 
prefer, however, to have the model constructed partially 
or entirely automatically. In Section IV-B, we mentioned 
that Lisp-based automatic theorem proving tools could as- 
sist in  proving assertions about Lisp models. This claim 
should be explored further. Based on manual proofs we 
have already completed, we would like to be able to prove 
mechanically that all the assertions of a specification are 
true for its (proposed) model. Preliminary work has been 
done on manual and automatic conversion of trace spec- 
ifications into Prolog 161, [19], but more work is needed. 

APPENDIX 

Model Independent Functions 

(defun L ( t r )  
(cond ( (eq  (nfdriver n i l  t r )  'error) n i l )  

( ' t  ' t ) ) )  

(defun V ( t r )  (v (nfdriver 0 (head t r ) )  ( t a l l  t r ) ) )  

(defun nfdriver  ( n f t r  t r )  
(cond ( ( n u l l  t r )  n f t r )  

( ' t ( c o n d  ( ( l p  n f t r  ( l i s t  (car t r ) ) )  (nfdriver 
(nf n f t r  ( l i s t  (car t r ) ) )  (cdr t r ) ) )  

( ' t  ' e r r o r ) ) ) ) )  
(defun callnamep ( t r  n) 

( ' t  n i l ) ) )  
(defun head ( t r )  

(cond ((and (eq ( length  t r )  1) (eq (caar t r )  n) ' t ) )  

(cond ( ( n u l l  (cdr t r ) )  n i l )  
( ' t  (cons (car t r )  (head (cdr 1)))))) 

(defun t a i l ( t r )  
(cond ( (eq  t r  n i l )  n i l )  

( ( e q  (cdr t r )  n i l )  ( l i s t  (car t r ) ) )  
( ' t  ( t a i l  (cdr t r ) ) ) ) )  

(defun emptytr ( t r )  (eq t r  n i l ) )  

Stack Functions 

(defun l p  ( n f t r  c )  
(cond ((callnamep c 'push) ' t )  

((and (callnamep c 'pop) (not (emptytr n f t r ) )  ' t ) )  
((and (callnamep c 'top) (not (emptytr n f t r ) )  ' t ) )  
( ' t  n i l ) ) )  

(defun nf ( n f t r  c )  
(cond ((callnamep c 'push) (append n f t r  c ) )  

((callnamep c 'pop) (head n f t r ) )  
((callnamep c 'top) n f t r ) ) )  

(defun v ( n f t r  c )  (cadar ( t a i l  n f t r ) ) )  

Queue Functions 

(defun l p  ( n f t r  c )  
(cond ((callnamep c 'add) ' t )  

((and (callnamep c 'remove) 

((and (callnamep c ' front)  

( ' t  n i l ) ) )  

(not (emptytr n f t r ) )  ' t ) )  

(not (emptytr nf t r ) )  . t ) )  
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top:stack - integer 
newstack: --t stack 

semantics 
pop(push(s,i)) = s 
top(push(s,i)) = i 

restrictions 
s = newstack + failure(pop,s) 
s = newstack - failure(top,s) 

ACKNOWLEDGMENT 
We would like to thank R. N. Horspool, Y. Wang, and 

G .  Yang for help in developing the Lisp models. 

REFERENCES 
111 A. L. Ambler et al., “GYPSY: A language for specification and im- 

plementation of verifiable programs,” in Proc. ACM Con& Language 
Design for  Reliable Systems, ACM, Mar. 1977, pp. 1-10. 

[2] W. Bartussek and D. L. Parnas, “Using assertions about traces to 
write abstract specifications for software modules,” in  Proc. Second 
Conf. European Cooperation in Informatics. New York: Springer- 
Verlag, 1978. 

[3] R. S. Boyer and J. S. Moore, “Proving theorems about LISP func- 
tions,” J .  ACM, vol. 22, no. 1, pp. 129-144, Jan. 1975. 

141 R. M. Burstall and J .  A. Goguen, “An informal introduction to spec- 
ifications using CLEAR,” in The Correctness Problem in Computer 
Science, vol. 13. 

[5] R.M. Burstall, D. B. Macqueen, D. T. Sannella, “HOPE: An ex- 
perimental applicative language,” in Con$ Rec. 1980 LISP Conf., 
Aug. 1980, pp. 136-143. 

[6] W. F. Clocksin and C .  S .  Mellish, Programming in Prolog. New 
York: Springer-Verlag, 1981. 

[7] N. H.  Gehani, “Specifications: Formal and informal-A case 
study,”Sojiwure-Practice and Experience, vol. 12, pp. 185-213, 
Jan. 1982. 

181 J .  A. Goguen and J. J. Tardo, “An introduction to OBJ: A language 
for writing and testing formal algebraic program specifications,” in  
Proc. 1976 In!. Con& Parallel Processing, IEEE, 1976, pp. 176- 
189. 

[9] J. Guttag, “Notes on type abstraction,” IEEE Trans. Sojiware Eng., 
vol. SE-6, no. 1, pp. 13-23, Jan. 1980. 

[IO] J .  V. Guttag and J. J .  Homing, “Formal specification as a design 
tool,” in  Con$ Rec. Seventh Annu. ACM Symp. Principles of Pro- 
gramming Languages, ACM, 1980. 

[ l l ]  -, “The algebraic specification of abstract data types,” Actu In-  
form.,  vol. 10, no. 1, pp. 27-52, 1978. 

[I21 J. V. Guttag, E. Horowitz, and D. R. Musser, “Abstract data types 
and software validation,” Commun. ACM, vol. 21. no. 12, pp. 1048- 
1064, Dec. 1978. 

[ 131 D. M. Hoffman, “Trace specification of communications protocols,” 
Ph.D. dissertation, Dep. Comput. Sci., Univ. North Carolina, 1984. 

[ 141 -, “The trace specification of communications protocols,” IEEE 
Trans. Comput., vol. C-34. no. 12, Dec. 1985. 

1151 M. E. Majster, “Limits of the ‘algebraic’ specification of abstract 
data types,” SIGPLANNofices, vol. 12, no. 10, pp. 37-42, Oct. 1977. 

[16] -, “Comment on a note by J. J .  Martin in SIGPLAN Notices, vol. 
12, no. IO,”SIGPLANNorices, vol. 13, no. 1 ,  pp. 22-23, Jan. 1978. 

[I71 J .  J .  Martin, “Critique of Mila E. Majster’s ‘Limits of the algebraic 
specification of abstract data types,’ ” SIGPLAN Notices. vol. 12. no. 
12, pp. 28-29, Dec. 1977. 

[I81 J. McLean, “A formal method for the abstract specification of soft- 
ware, ” J .  ACM, vol. 31, no. 3 ,  July 1984. 

[ 191 J. M. McLean, D. Weiss, and C. Landwehr, “Executing trace spec- 
ifications using Prolog,” Naval Research Lab., Tech. Rep. 1985. 

1201 D. L. Parnas, “The use of precise specifications in the development 
of software,” in Proc. IFIP Congress 1977. Amsterdam, The Neth- 
erlands: North-Holland. 1977. 

1211 D. L. Parnas and P. C .  Clements, “A rational design process: How 
and why to fake i t , ”  IEEE Trans. Sojiware E n g . ,  vol. SE-12, no. 2 ,  
pp. 251-257, Feb. 1986. 

[22] C. A .  Sunshine et al. ,  “Specification and verification of communi- 
cation protocols in AFFIRM,” IEEE Trans. Sofware E n g . .  vol. SE- 
8, no. 5 ,  pp. 460-489, Sept. 1982. 

Norton, 1984. 

New York: Academic, 1981, pp. 185-213. 

1231 R. Wilensky, LISPcraji. 

(de fun  nf ( n f t r  c )  
(cond ( ( ca l lnamep  c ’add) (append n f t r  c ) )  

( ( c a l l n a m e p  c ’remove) ( c d r  n f t r ) )  
( ( c a l l n a m e p  c ’ f r o n t )  n f t r ) ) )  

(de fun  v ( n f t r  c )  ( c a d a r  n f t r ) )  

Traversing Stack Parse Function 

(de fun  p a r s e  ( tr)  

(de fun  p t l  ( tr)  ( s u b t r a c e  t r  

(de fun  p c l  ( t r )  ( s u b t r a c e  t r  

(de fun  p t 2  ( t r )  ( s u b t r a c e  t r  

( l ist  ( p t l  t r )  ( p c l  t r )  ( p t 2  t r )  (pd t r ) ) )  

1 (- ( l e n g t h  t r )  (* 2 ( c o u n t  ’down t r ) )  1))) 

(- ( l e n g t h  t r )  (* 2 ( c o u n t  ‘down t r ) ) )  1)) 

(+ (- ( l e n g t h  t r )  (* 2 ( c o u n t  ’down t r ) ) )  1) 
( c o u n t  ’do& t r ) ) )  

(+ (- ( l e n g t h  t r)  ( c o u n t  ’down t r ) )  1) 
( c o u n t  ’down t r ) ) )  

(de fun  s u b t r a c e  ( t r  s 1) 
(cond ( ( o r  ( l e s s p  s 1) ( l e s s p  1 1)) n i  

(de fun  pd ( t r )  ( s u b t r a c e  t r  

( ( e q  s 1) 
(append (list ( c a r  t r ) )  

( s u b t r a c e  ( c d r  t r )  1 (- 1 1))  
(’t ( s u b t r a c e  ( c d r  t r )  (- s 1) 1))) 

(de fun  c o u n t  ( ca l lname  t r )  
(cond ( ( n u l l  t r )  0) 

( ’ t ( c o n d  
( ( e q  ( c a a r  t r)  ca l lname)  

(+ 1 ( c o u n t  ca l lname  ( c d r  t r ) ) ) )  
( ’ t  ( c o u n t  ca l lname  ( c d r  t r ) ) ) ) ) ) )  

Traversing Stack Functions 

( d e f u n  l p  ( n f t r  c )  ( l p l  ( p a r s e  n f t r )  c ) )  
(de fun  l p l  ( p n f t r  c )  

(cond ( ( c a l l n a m e p  c ’push)  ( empty t r  (d p n f t r ) ) )  
( ( c a l l n a m e p  c ’pop) 

(and ( n o t  ( empty t r  ( c l  p n f t r ) ) )  
( empty t r  (d p n f t r ) ) ) )  

( ( ca l lnamep  c ’down) ( n o t  ( empty t r  ( t l  p n f t r ) ) ) )  
( ( c a l l n a m e p  c ’ c u r r e n t )  

( ( ca l lnamep  c ’ to - top )  ’t) 
(’ t  n i l ) ) )  

( n o t  ( empty t r  ( c l  p n f t r ) ) ) )  

( d e f u n  nf ( n f t r  c )  ( n f l  n f t r  ( p a r s e  n f t r )  c ) )  
(de fun  n f l  ( n f t r  p n f t r  c )  

(cond ( ( ca l lnamep  c ’push )  (append n f t r  c ) )  
( ( ca l lnamep  c ’pop) (ti p n f t r ) )  
( ( c a l l n a m e p  c ’down) (append n f t r  c ) )  
( ( ca l lnamep  c ’ c u r r e n t )  n f t r  ) 
( ( ca l lnamep  c ’ to- top)  

( ’ t  n i l ) ) )  
(append (tl p n f t r )  ( c l  p n f t r )  ( t 2  p n f t r ) ) )  

(de fun  v ( n f t r  c )  ( c a d a r  ( c l  ( p a r s e  n f t r ) ) ) )  
(de fun  tl ( p n f t r )  ( c a r  p n f t r ) )  
(de fun  c l  ( p n f t r )  ( c a d r  p n f t r ) )  
(de fun  t 2  ( p n f t r )  ( c a d d r  p n f t r ) )  
(de fun  d ( p n f t r )  ( cadddr  p n f t r ) )  

Unique Functions 

(de fun  l p  ( n f t r  c )  
(cond ( ( ca l lnamep  c ’un ique )  ’ t)))  

(de fun  nf  ( n f t r  c )  
(cond ( ( c a l l n a m e p  c ’un ique )  (append n f t r  c ) ) ) )  

(de fun  v ( n f t r  c )  ( l e n g t h  n f t r ) )  

Algebraic Stack Specification 

syntax 
push: 
pop: stack - stack 

stack x integer + stack 
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