
IEEE TRANSACTIONS ON SOFTWARF ENGINEERING. VOL 14, NO 9. SFPTEMBER I Y X X I243

Trace Specifications: Methodology and Models
DANIEL HOFFMAN, MEMBER, IEEE, A N D RICHARD SNODGRASS

Abstract-Precise abstract software specification is achievable by
using formal specification languages. However, nontrivial specifica-
tions are inordinately difficult to read and write. This paper summa-
rizes the trace specification language and present? the trace specifica-
tion methodology: a set of heuristics designed to make the reading and
writing of complex specifications manageable. Also described is a tech-
nique for constructing formal, executable models from specifications
written using the methodology. These models are useful as proofs of
specification consistency and as executable prototypes. Fully worked
examples of the methodology and the model building technique are in-
cluded.

Index Terms-Formal specification, logic, prototype, software en-
gineering.

I. SPECIFICATION ISSUES
N this paper, we present a set of heuristics that aid in I the writing of good specifications of complex modules.

By specGCation we mean a precise description of the es-
sential behavior of a software module. We wish to con-
centrate on the correctness of the software and so we do
not include speed or cost requirements in our specifica-
tions. The specifications are expressed in the trace lan-
guage, developed by Pamas and Bartussek and formalized
by McLean [2], [18]. In the remainder of this section, we
discuss the role of specifications in software develop-
ment.

We envision our specification technique as a designer’s
tool, as discussed by Parnas [20], [2 11. Nearly every soft-
ware design methodology is based on the decomposition
of large, complex modules into smaller, simpler ones.
Then each module can be dealt with separately, often han-
dled by different people or teams. Each module can be
further decomposed, or, if it is simple enough, imple-
mented directly. If the modules are to cooperate success-
fully at system integration time, then their specifications
must be clearly understood. A module M ’ s specification
must be understood by both the implementors of M and
the implementors of every module that uses M . Thus, it
is crucial to precisely and completely record the specifi-
cations of each module.

Specifications can also support the design process
through design verification. Testing is used to detect de-
sign errors as they appear in an implementation. We would

Manuscript received April 30, 1986; revised Ju ly 31, 1986. This work
was supported i n part by the Natural Science and Engineering Research
Council of Canada under Grant A8067.
D. Hotfman is with the Department of Computer Science. University of

Victoria. Victoria. B.C. V8W 2Y2, Canada.
R. Snodgrass is with the Department of Computer Science. University

of North Carolina. Chapel Hill. NC 27514.
IEEE Log Number 8822447.

like to detect design errors before the design is imple-
mented, and avoid the cost of changes to the implemen-
tation resulting from late detection of design errors. With-
out precise specifications it is difficult to verify the
correctness of a decomposition. Formal specifications,
written in a language with a formal syntax and semantics,
have two important advantages over informal specifica-
tions. First, formal specifications avoid the ambiguity and
imprecision inherent in prose, and second, formal speci-
fications are machine processable, crucial for specifica-
tion verification. Abstract specifications are written solely
in terms of the observable behavior of the module. In con-
trast, operational specifications are written in terms of a
program, usually written in some procedural language,
that performs the desired task [11. We favor abstract spec-
ifications because they focus attention on the require-
ments of each module (its specification) as opposed to the
method used to fulfill those requirements (its implemen-
tation). The advantages of abstract specifications have
been discussed in more detail elsewhere [2], [9], [18].

The remainder of this paper is divided into five sec-
tions. Section I1 describes the trace language and Section
I11 the trace specification methodology. Section IV de-
fines trace models and illustrates their use. Section V
compares the trace and algebraic specification methods
and Section VI presents our conclusions.

11. THE TRACE LANGUAGE
In this section we describe the trace language, demon-

strate it in several examples and argue the need for a spec-
ification methodology.

A . Basic Elements
Traces are a technique invented by Parnas and Bartus-

sek for the formal and abstract specification of software
modules [2]. McLean continued their work by establish-
ing a formal basis for traces, including a formal syntax
and semantics, a derivation system, and completeness and
soundness results [181. In a trace specification, a mod-
ule’s behavior is described in terms of procedure or func-
tion calls and retum values from those calls. Following
McLean’s description, modules are specified by describ-
ing three properties they must possess:

1) What are the names of the module’s access proce-
dures and functions, and what are their parameter and re-
turn value types, if any? These properties are described
by syntax sentences of the form:

0098-558~/88/0900- l243$01 .OO O 1988 IEEE

1244 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14. NO. 9, SEPTEMBER 1988

2) Which series of procedure calls, termed traces, are
legal, i.e., are not regarded as being in error? These are
indicated by semantic assertions of the form L (trace).
The behavior of the module in response to illegal trace is
undefined.

3) What is the output of a legal trace that ends in a
function call? This value is denoted by semantic asser-
tions of the form V(trace) = value.

Trace specifications also contain symbols from predi-
cate calculus. In particular -, and * are used for i f then
and ij‘ and only ij’, respectively. The connectives 1, &,
and 1 are used for not, and, and or, respectively, as well
as the existential quantifier (3a) for there exists a, the
universal quantifier (V a) for for all a, and the compari-
son operators < , I, =, # , I, > . Operator precedence
is as follows:

highest = < I = # 1 > (= defined below)
1

6k - I
lowest --t ++

The dot (.) concatenates procedure calls, e denotes the
empty trace, and comments are delimited by / * and */.

In order to make specifications more readable, the fol-
lowing abbreviation is used. If two traces, TI and T2, agree
on legality and return value with respect to future module
behavior, then we say they are equivalent and write T, =
T2. More precisely, any two traces TI and T2 are equiva-
lent if

(VT) ((L(TI. T) * L(T2. TI) &
((Tis not empty) -, (

(TI. T has a value * T2. T has a value) &
((TI . T has a value) 4 V (TI. T) = V (T2. T)))))

We also assume that any prefix of a legal trace is legal.
More formally:

(VS,T) (L (S . T) -+ L (S)) .

B. A Stack Specijication
Consider the specification of a stack module (taken from

McLean [181) that contains three procedures: push takes
an integer parameter and returns no value; pop neither
takes a parameter nor returns a value; and top takes no
parameter and returns an integer value. The full specifi-
cation is shown in Fig. 1.

The semantics of the module consists of five assertions
describing the module’s behavior:

1) If a trace has not resulted in an error, then push can
be legally called with any integer parameter (the stack is
unbounded).

2) Calling top will not result in an error if and only if
calling pop does not (the stack must be nonempty).

3) Calling push followed by pop will not affect the
future behavior of the module (pop cancels push).

4) If top can be legally called, then calling it will not
affect the future behavior of the module (top does not af-
fect the “internal state” of the module).

5) The value of any legal trace ending in push followed
by top is the parameter of that push.

NAME
stack

SYNTAX
push: integer;
POP: ;
top: - integer;

SEMANTICS
/*1*/ (V T,i) (L(T) - L(T.push(i)))

/*2*/ (V T) (L(T.top) * L(T.pop))

/*3*/

/*4*/

/*5*/

(V T,i) (T = T.push(i).pop)

(V T) (L(T.top) + T E T.top)

(V T,i) (L(T) -+ V(T.push(i).top) = i)

Fig. 1. Stack specification.

We claim that this specification captures the essence of
an unbounded integer stack. For example, to find the value
of a legal trace ending in top, we apply assertions 3 and
4 to remove all pop and top calls, respectively, and then
apply assertion 5 to provide the value desired.

C. A Queue Specijication
Fig. 2 shows a trace specification of an unbounded in-

teger queue taken from Parnas and Bartussek [2]. Note
that while the stack and queue syntax sections are very
similar, their semantic sections are quite different. Infor-
mally, the semantics assertions state that:

(1-3) Traces which consist of any number of add calls
are legal. A remove orfront call is also permitted, if that
call is preceded directly by an add.

(4-6) There are other legal traces. Afront call has no
effect on the future behavior of the module. The sequence
add.remove may be replaced by remove.add or, if it oc-
curs at the start of a trace, deleted.

(7, 8) These assertions show the value of front for a
queue of length one and a queue of length greater than
one.

To find the value of a legal trace containing removes
and ending in front, we repeatedly apply assertion 5 ,
shifting the remove left until it is beside the first add, then
apply assertion 6 , deleting the remove-add pair. This pro-
cess is repeated until we have an equivalent trace that does
not contain a remove. We then apply assertion 8 to deter-
mine the value returned by front.

D. More Complex Specijications
We have shown how traces can be used to write com-

pact and fairly readable stack and queue specifications.
Yet, when we attempted specifications of larger, more
complex modules, difficulties arose. Previously devel-
oped trace specifications were short, rarely more than 25
lines long. Hence difficulties in scaling were not apparent
in these specifications. Due to the complexity of the mod-
ules we were specifying, much longer specifications were
necessary. The assertions in the semantics section quickly
became large and unintelligible. We were often unable to
determine whether a specification contained assertions that

HOFFMAN A N D SNODGRASS: TRACE SPECIFICATIONS 1245

NAME
queue

SYNTAX
add: integer;
remove: ;
front: + integer;

SEMANTICS
/*I*/ (V T,i) (L(T) -+ L(T.add(i)))

/*2*/ (V T,i) (L(T) -+ L(T.add(i).remove))

/*3*/ (V T) (L(T.remove) t+ L(T.front))

/*4*/ (V T) (L(T.front) -+ T.front T)

/ * 5 * / (V T,i) (L(T.remove) +

T.add(i).remove T.remove.add(i))

/ * 6 * / (V i) (add(i).remove e)

/*7*/ (V i) (V(add(i).front) = i)

/*8*/ (V T,i) (L(T.front) -+ V(T.add(i).front) = V(T.front))

Fig. 2. Queue specification.

Heuristic-Structure the Semantics According to Nor-

Given a normal form, we may express module be-
havior for all traces in terms of module behavior for
just the normal form traces. Specifically, we base
the semantics assertions on traces of the form T.C,
where Tis normal form and C is a single call. Then,
for each call C:

mal Form Prejixes:

State whether T. C is legal.
If T.C is legal then

If T.C is not normal form then provide a normal
form trace TNF where TNF = T. C

If C is a function call, specify I/ (T. C) .

were mutually contradictory or whether the specification
completely characterized the behavior of the module.
Small changes to the desired characteristics of a module
resulted in disturbingly large changes to the specification.
These experiences motivated us to develop a trace speci-
fication methodology consisting of a set of five heuristics
designed to make the writing of large trace specifications
manageable.

111. THE TRACE SPECIFICATION METHODOLOGY
In this section we present the trace specification meth-

odology and illustrate it on new stack and queue specifi-
cations, and on a more complex example, a traversing
stack specification. The first step in developing a trace
specification is writing the syntax section. Then, using the
heuristics described below, we write the semantics sec-
tion, transforming our informal notions of correct module
behavior into assertions about trace legality, equivalence
and value.

Heuristic-Base the Specification on a Normal Form.

A normal form is a representative subset of the
legal traces. For a given specification S, consider the
trace relation “ = ”, and the set TL of all legal traces.
It follows from the definition of “ = ” (in Section
11-A) that it is an equivalence relation and so parti-
tions TL into a set of equivalence classes. We require
that a normal form for S contain at least one trace
from each of the equivalence classes. A normal form
is “representative” in the sense that, for any legal
trace T, there is a normal form trace TNF equivalent
to T. For any specification, the set TL is itself a nor-
mal form. Typically, specifications have an infinite
number of normal forms, most of which are unin-
teresting. We choose a normal form which is simple
to describe and which makes the next heuristic easy
to apply.

Using this heuristic helps ensure that the legality
and value of every trace is specified.

Heuristic- Use Predicates:

Using the trace language, define predicates and
functions on traces. Use these to decompose a single
complex assertion into simpler assertions, much as
procedures are used in programming languages.
Usually a predicate on traces is defined which is true
for exactly those traces in the normal form.

The remaining two heuristics are not easily demon-
strated on small examples and so are described only briefly
here (but in detail elsewhere [131, [141).

Heuristic-Develop Specifications Incrementally:

Develop a specification for a complex module as a
series of specifications, beginning with a specifica-
tion for a much simpler module and culminating with
the full specification.

Heuristic- Use Macros to Hide Record Structure:

Especially in protocol specifications (see Section III-
D), macros can be used effectively to hide the com-
plex record structure of the messages passed be-
tween modules.

We present three functions, informally defined in Fig.
3, to provide information about traces and domain vari-
ables and to make certain logical constructions more con-
venient (see [13] for formal definitions). Individual ap-
plications may also define additional functions; those
described here are of general use.

A. A New Stack Specification
We now illustrate the built-in functions and heuristics

just described by respecifying the stack module (see Fig.
4). We choose the stack normal form to be the set of traces
consisting solely of push calls. Although there are an in-
finite number of possible normal forms for this module,
our choice is attractive because there is a natural corre-
spondence between a sequence of push calls and our con-
ception of the contents of the stack. We write the nor-
malform predicate in the PREDICATES section and then

1246 IEEE TRANSACTIONS ON SOFTWARE kNGINEERING, VOi. 13. NO 9. S E P l E M B E R 19XX

l eng th (7‘) NAhZIS
length (T) - n i f and o d y if n is the number of ca l l s of any
name in T . l e n g t h (p u s h (I) . p o p . p u s h (?) . p o p) = 1 is t ruc

queue

S\T\ITiLY
counl(c , T) add: integer;

count(c , T) = n i f and only if T has n calls ~ i t l i nanie c
count(pop , push (l).pop.push (5) . p o p) = 2 is true.

remove: ;
front: - integer,

p r e f i d s , T)
prefiz(S, T) is true if and only if S is a prefix of T
prefi4push (I) , push (1)) and
prefidpush (l) , push (I) . p u s h (2))) are both true.

Fig. 3 . Builtin functions.

NAhlE
stack

SYNTAX
push: integer;
pop: ;
top: -+ integer;

PREDICATES
norrnalforrn(T) et length(T) = count(push,T)

smwrics
(V T,C) (norrnalform(T) & length(C) = 1 -t

(V i) (C = push(i) -
/*L*/ L(T.C)

(C = pop -t

) &
(C = Lop +

/*L*/
/*E*/

(L(T.C) ++ T # e) &
(L(T.C) - (V T1,i) (T = Tl.pusli(i) - T.C T l))

/*L*/ (L(T.C) c-t T # e) &
(L(T.C) -

/*E*/ T.C E T &
/*V*/ (V Tl,i) (T = Tl.push(i) ---* V(T.C) = i))
)

1
Fig. 4. New stack specification

use this predicate to structure the SEMANTICS section.
For a trace not in normal form, the equivalence clauses

PREDICATES
normalform(T) c-t length(T) = count(sdd,l’)

SEMANTICS
(V T , C) (normalform(T) k length(C) = 1 +

(V i)(C = add(i) -
/*L*/ L(T.C)

(C = remove -
/*I,*/
/*E*/

(C = front -
/*L*/

/*E*/ T.C G T B
/*V*/

(L(T.C) fi T # e) &
(L(T.C) -+ (V T1,i) (T = add(i).Tl -+ T.C TI))

(L(T.C) ++ T # e) &
(L(T.C) -+

(V T1,i) (T = add(i).Tl -+ \.(T.C) = i))
1

1
Fig. 5 . New queue specification.

obvious association between push, pop, and top, and add,
remove, and front, respectively.

The new specifications differ in only two lines:
In the equivalence section, pop differs from remove:

pop eliminates the newest (rightmost) push while remove
eliminates the oldest (leftmost) add.

In the value section, top differs from front: top re-
turns the parameter from the newest (rightmost) push
while front returns the parameter from the oldest (left-
most) add.

In contrast, the original stack and queue specifications
(see Fig. 1 and 2) are quite dissimilar, and mask the single
essential difference between stack and queue behavior.

may be used to reduce it to normal form, by eliminating
top calls and push-pop pairs. For eachpush, pop, and top
call, we write assertions describing the legality (/ *L*/),
equivalence (/*E*/), and value (/ * V * /) of a single oc-
currence Of that when preceded by a normal form

tion states that top is legal exactly when the stack is
nonempty, that top has no effect on the future behavior of
the module, and that top returns the value most recently

specification shown in Fig. 1, it is just as comprehensible.
Additionally, it is easier to see that the assertions are or-
thogonal and express all desired legality, equivalence and
value constraints.

c. A Traversing Stack Spec$cation
In this section we present a more complex example, a

traversing stack (tstack), to illustrate the power of the
methodology. As in the stuck module, tstack permits new
elements to be added or deleted only at the top of the

below the top of the stack. The module syntax is shown
in Fig. 6. Informally, the semantics are as follows. If no
calls to down or to-top are made, then push, pop, and

rap, respectively. Down the next lower element to
become the one returned by current, and to-top causes
the element on the top of the stack to be returned by cur-
rent. Push and p o p are illegal unless the current element

trace. For consider the The ’pecifica- stack. However, tstack provides read to elements

pushed. this ‘pecification is longer than the stack current operate exactly as do the standard push, pop, and

. . -
is the top element. Pop, down, and current are illegal if
the stack is empty. Down is also illegal if there is no ele-
ment below the current one.

We choose the normal form to be any number N ofpush
calls followed by fewer than N down calls. We have thus

B. A New Queue Specijcation
In this section, we use the methodology as a tool to

write a new queue specification, shown in Fig. 5 , in the
same manner as for the new stack specification. Note the

HOFFMAN A N D SNODGRASS: TRACE SPECIFICATIONS 1247

S\T\ITAX
push: integer;
pop: ;
down: ;
current: - integer;
to-top: ;

Fig. 6 . Traversing stack syntax.

PREDICATES
norrnalforrn(T) * (3 P,D) (T = e I

(T = P.D & all(push,P) C all(down,D) & length(I‘) > length(D)))

parse(Tl,Cl,T2,D) t+ (TI.Cl.T”.D = e I
(all(push,Tl.Cl.T2) C all(down,D) &
length(C1) = 1 & length(T2) = length(D)))

all(C,T) c-* count(C,T) = length(T)

Fig. 7 . Traversing stack predicates.

combined the stack normal form, representing the stack
contents, with a sequence of down calls, representing the
position of the current element. For example, for the stack
contents

4
3
2 + current element
1

the corresponding normal form trace is

push (1) .push (2) .push (3) .push (4). down. down

The normalform predicate is shown in Fig. 7 and makes
use of the simple predicate all.

In the tstack semantics, we use the parse predicate to
split a normal form trace into the following four parts:

T I : the push calls associated with those elements be-

C 1 : the push call associated with the current element.
T2: the push calls associated with those elements above

D: the down calls.

low the current element.

the current element.

For example, for the normal form trace just considered

TI = p u s h (l) , C1 = push(2),
T2 = push(3).push(4), D = down.down

The parse predicate (see Fig. 7) expresses this structure.
By providing easy access to the “current push” and the
sequence of down calls in a normal form trace, the parse
predicate makes the semantics shorter and easier to write
and read. The result is a semantics section (see Fig. 8)
that is quite similar to that of stack.

D. Specijication Experience
In addition to the modules presented in this paper, the

trace specification methodology has been used to re-
specify all five modules (stack and queue are the first two)
originally specified by Parnas and Bartussek [2], and var-
ious other modules, including a relatively complex graph

SEMANTICS
(b! T,C) (norrnalforrn(T) S: length(C) = 1 -
(V Tl ,Cl ,T? ,D) (T = T1.CI.TO.D S: parse(TI,Cl,TS,D) -

(V i) (C = push(i) -
/*L*/ L(T.C) t i D = e
) &
(C = pop --+

) &

) &

/*L*/ (L(T.C) D = e S: C I # e) S:
/*E*/ (L(T.C) - T.C T1)

(C = down --+

/*L*/ L(T.C) ct normal-form(T.C)

(C = current -
/*L*/ (L(T.C) t-t C1 # e) S:

L(T.C) - (
/*E*/ T .C E T &
/*V*/ (b! i) (Cl = push(i) - V(T.C) = i))
) &
(C = to-top +

1

/*L*/ L(T.C) C
/*E*/ (L(T.C) -+ T.C E TI.CI.T2)

))

traversal

Fig. 8. Traversing stack semantics.

module. Also, significant experience has been
gained writing communications protocol specifications.
This work is described in detail elsewhere [13], [14].

IV. TRACE MODELS
In this section we describe McLean’s work on models

of trace specifications and present a method for writing
models in Lisp from specifications written using the meth-
odology described in Section 111.

A . McLean Models
A model for a trace specification consists of a tuple D

of domains and an interpretation function I that assigns
to each meaningful element of the trace language an ele-
ment of a domain of D [181. The domains in the tuple D
are sets of values, such as the integers or the set of all
strings on some alphabet. Meaningful elements of the
trace language include the predicate L and the function V .
We say that a specification is consistent if it is impossible
to derive a contradiction from its assertions. McLean pro-
vides a formal definition of model, shows that a trace
specification is consistent if and only if it has a model,
and proposes model-building as the preferred method for
proving the consistency of a trace specification.

McLean presents models for two modules, variants of
the stack and queue modules discussed above. For the
purposes of this paper, two aspects of the model are of
interest: 1) the domain, in the tuple D, corresponding to
traces, and 2) I (L) and I (V) , the interpretations assigned
to the predicates L and V , respectively. In McLean’s stack
model, the trace domain consists of the set of all character
strings corresponding in the obvious way to sequences of
calls. For example, the string “push (6).top.pop”, which
is a trace domain element, corresponds to the trace
push(6).top.pop. Definitions for I (L) and I (V) are based
on a simple algorithm, expressed in pseudocode. The al-

11 ii r

1248 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 14, NO. 9, SEPTEMBER 1988

gorithm, particular to this model, takes a trace T and re-
moves top calls and matching push and pop calls, trans-
forming T into an equivalent trace TNF containing only
push calls. (Z(L)) (T) is defined to be true if and only if
T can be so transformed, and (I (V)) (‘IT. top ”) is defined
to be the value pushed by the last call in TNF.

For trace specifications written in an ad hoc fashion,
models must also be constructed ad hoc. Considerable in-
sight into each specification is required to produce nor-
malization algorithms of the type described above. How-
ever, for specifications written using the trace
methodology, models can be constructed manually in a
straightforward fashion, converting the specification one
line at a time. Insight into the meaning of each specifi-
cation is therefore unnecessary (and perhaps undesirable!)
for the model builder. Below, we motivate our choice of
modeling language, describe the conversion from speci-
fication to model and present three examples.

B. Lisp Models
We have chosen to write in Lisp [2 3] , for the following

reasons:
Since Lisp is a formal language, a Lisp model is for-

mal, avoiding the vagueness of prose or pseudocode.
Since Lisp is a programming language, a Lisp model

is directly executable (though perhaps inefficiently). All
the Lisp code presented in this paper has been run and
tested.

Traces are naturally represented as lists and lists are
easily manipulated in Lisp.

Lisp-based automatic theorem proving is available to
assist in proving assertions about Lisp models [3] .

For those unfamiliar with Lisp, the text should still be
comprehensible, but the code in the Appendix may not.
Note that a fixed width font is used for all Lisp objects.

Lisp models can constructed in a straightforward man-
ner from specifications written using the trace specifica-
tion methodology. For the trace domain we use Lisp lists.
In the model, a trace is a (possibly empty) list of calls and
a call is a (nonempty) list consisting of a procedure or
function name followed by actual parameters of the ap-
propriate number and type. For example, the trace
push (l) .push (2) .pop . top becomes, in the model ((push
1) (push 2) (pop) (t o p)) . We define Z(L) and Z (V)
using the Lisp functions L and V, respectively. L takes a
trace parameter T and returns true or false, according to
whether T is legal or not. V takes a trace parameter T,
assumed to be legal and ending in a function call, and
returns V (T) . Having expressed L and V in terms of trace
models, we describe how to implement them to represent
a model for a given trace specification.

Our trace specifications are expressed in terms of the
legality, equivalence, and value of a single “new” call
C, following a normal form “history” T. We imitate this
structure in our Lisp models by writing functions Ip, nf ,
and v, each taking T and C as parameters. Ip returns true
or false according to whether T.C is legal, nf returns a
normal form trace equivalent to T.C , and v returns

V (T . C) . One problem remains: Ip, nf, and v operate only
on normal form traces, while L and V must also handle
traces not in normal form. Our solution is the function
nfdriver, that recursively applies Ip and nf to detect an
illegal trace and transform a legal one into its normal form
equivalent. The functions L, V and nfdriver, together
with several utility functions, are shown in the Appendix
under ‘‘Model Independent Functions. ” These functions
are the same for all models we have written. The Ip, nf,
and v functions are different for each model; versions for
stack and tstack are presented below.

Throughout the remainder of Section IV, we follow the
convention that t r , nftr, and c are Lisp variables repre-
senting traces, normal form traces, and traces of length
one, respectively. Note that, in Lisp, ’t represents logical
true and nil logical false. When writing the model specific
functions, we choose Lisp constructions that follow the
specification as closely as possible, even when significant
time or space inefficiencies result and could be avoided
by ‘‘clever programming. ” Thus, we emphasize confi-
dence in model correctness rather than model efficiency.
When appropriate, the Lisp model could be improved, or
translated to a more efficient language.

C. A Stack Model
The Ip, nf , and v functions (Appendix-“Stack Func-

tions”) are derived directly from the stack specification
of Fig. 4. Ip is generated from the lines dealing with le-
gality (labeled /*L*/); nf is generated from the lines
dealing with equivalence (labeled /*E*/); and v is gen-
erated from the lines dealing with value (labeled / *V*/).
We illustrate the operation of the stack model by listing
the nfdriver calls and actual parameters that result from
a call to L . If we execute

(L ’ ((push 1) (push 2) (pop) (top) 1 1
then the nfdriver calls will be

(nfdriver nil ((push 1) (push 2) (pop) (top) 1)
(nfdriver ((push 1) 1 ((push 2) (pop) (top) 1)
(nfdriver ((push 1) (push 2) 1 ((pop) (top) 1)
(nfdriver ((push 1) 1 ((top) 1)
(nfdriver ((push 1)) nil)

and the nfdriver call invoked directly by L will return ‘t ,
indicating that push (l) .push (2) .pop . top is a legal trace.
If, however, we execute

(L ’((push 1) (pop) (top) 1)
then the nfdriver calls will be

(nfdriver nil ((push 1) (pop) (top)))
(nfdriver ((push 1) 1 ((pop) (top) 1)

UP nil ((top) 1)

The last nfdriver call shown will call

and Ip will return nil, causing nfdriver to return ’error,
indicating that push (l) .pop . fop is an illegal trace. Calls
to V are handled in a similar fashion, except that only the

HOFFMAN A N D SNODGRASS: TRACE SPECIFICATIONS I249

head of the trace is transformed to normal form and then
this normal form trace and the ta i l of the original trace
are passed to v . For example, (V ’ ((push l) (p u s h
2) (pop) (top) 1) will return 1 .

D. A Traversing Stack Model
The stack and tstack specifications are quite similar ex-

cept for the presence of the parse predicate in the latter.
Appropriately, the two models are similar except for the
parse function in the tstack model. In the specification,
the parse predicate is used to assert that if a trace T is
divided into the subtraces T1, C1, T 2 , and D , then certain
assertions hold on the subtraces. In the model, the parse
function takes the parameter nftr and finds the four sub-
traces, so that new traces can be constructed from them.
The fact that specifications assert constraints on traces and
models search for traces to fit those constraints clearly
characterizes the difference between our specifications and
models.

The parse function (Appendix-“Traversing Stack
Parse Function”) is implemented using two other func-
tions. Subtrace takes the parameters, tr, s, and I and
returns the subtrace of tr starting at position s and I calls
in length. The count Lisp function operates identically
to the count function built into the specification language.
With these two functions, parse is quite simple to imple-
ment: by using count to determine the number of down
calls, the four subtraces are easily extracted with sub-
trace. With parse available, the Ip, nf, and v functions
(Appendix-“Traversing Stack Functions”) are coded di-
rectly from the specification. Essentially, the tstack
model is just the stack model with calls to the parse
function added.

E. Spec$cations, Models, and Totalness
One of the strengths of the trace approach is that models

and specifications are distinct, while model-based speci-
fication methods blur or eliminate this distinction. This
section introduces the term total and presents a nontotal
specification and one of its models.

A specification is total if, for each legal trace ending in
a function call, exactly one value for the trace can be de-
rived from the specification [181. As noted before, a spec-
ification is consistent if it has a model. If it is both con-
sistent and total, it has at least one model and all of its
models behave identically (with respect to function call
return values). If it is consistent and nontotal, it has
models with different behavior. The three specifications
presented above are total. We now present an example of
a nontotal specification.

The unique module provides unique integers for such
applications as automatic file or variable naming. Unique
supports the single call getint, which takes no parameters
and returns an integer value. Any value is acceptable, as
long as it has not been returned by a previous getint call.
In the specification (see Fig. 9), we choose the normal
form to be all traces: no other choice is possible. The
semantics section is straightforward. T. getint is always

NAME
unique

SYNTAX
getint: + integer;

PREDICATES
normalform(T) t+ true

SEMANTICS
(V T,C) (normalform(T) & length(C) = 1 +

(C = getint -+

/*V*/ (L(T.C) + (V T1) (prefix(T1,T) + V(T1) # V(T.C)))
/*L*/ L(T.C) &

1
1

Fig. 9. Unique specification

legal and getint always returns a “new” value. No equiv-
alence assertion is needed because T.getint is always nor-
mal form itself.

In our unique model (Appendix-‘ ‘Unique Model”),
the first getint call returns one and each successive call
returns one greater than the previous call, via the length
function call in v . Infinitely many other choices are avail-
able. For example we may redefine v as

(defun v (nftr c) (plus (length nftr) K 1)

where K is any integer constant other than 0. The result
is a model of the specification that behaves differently
from that of Fig. 13, returning K , K + 1, * * instead of
0 , 1 , * * .

F. Other Models
Using the approach described above, we have written

Lisp models (and hence, consistency proofs by construc-
tion) for all the examples in the original traces paper [2] .
Of the last example in that paper, Parnas and Bartussek
say “demonstration of consistency is more complex . . .
such a proof is beyond the scope of this paper . . . ” [2] .

V. A COMPARISON: TRACE AND ALGEBRAIC
SPECIFICATIONS

The algebraic specification method is a well-known
technique for formal software specification [8], [9], [111.
A comparison between the trace and algebraic methods
provides insight into the strengths and weaknesses of each.

We begin by noting that the two methods are similar in
three important ways. First the goal of both methods is
the same: the implementation-independent specification
of a software module in terms of calls and return values.
Second, both the trace and algebraic methods have solid
formal foundations, the former based on first order logic
and the latter on heterogeneous algebra. And third, both
methods are in fact “algebraic,” because first order logic
is a cylindric algebra [181.

The most important difference between the two meth-
ods is that algebraic specifications are based on the type
of interest, while trace specifications are based on call se-
quences. For a module where the type of interest is not
observable to its users (which is the case for all the mod-

1250 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL 14, NO 9~ SEPTEMBER 1988

ules specified in this paper) an algebraic specification must
be written in terms of objects not visible to the module's
users. We see this as a fundamental weakness in the al-
gebraic approach. Consider an algebraic specification of
the stack module (Appendix-' 'Algebraic Stack Specifi-
cation"). The push call must take a stack parameter and
return a stack value. The specification must contain a
newstack call returning an "empty stack." And, the spec-
ification provides no representation for the sequence of
events represented by the trace push (l) . t op . top [1 E]. The
obvious choice of top (top (push (newstack, 1))) is not
available because the inner top returns 1 while the outer
top requires a parameter of type stack. The trace method
does not have these problems: the type of interest can be
made visible or not, according to the specifier's inten-
tions.

We see three other weaknesses of the algebraic method,
relative to traces. First, many algebraic specifications re-
quire "hidden functions": calls (in addition to calls such
as newstack) that are not visible to the module user but
are essential to express the semantics of the visible oper-
ations. For example, the tstack module cannot be speci-
fied without hidden functions. In fact, early tstack speci-
fication attempts generated heated debate as to whether an
injnire number of algebraic axioms were required [15]-
[17]! We have not used and see no reason to use hidden
functions in trace specifications. Second, we see no way
to extend the algebraic method to specify interprocess
communication. While published research describes al-
gebraic specification of communications protocols [22],
this work makes heavy use of explicit state variables and
so is not algebraic in the standard sense. However, traces
extend naturally to handle interprocess communication
[13, 141. Finally, algebraic specifications do not permit
existential quantification: all variables are assumed to be
universally quantified. As a result, there appears to be no
algebraic specification for modules such as unique [181.

On the other hand, while the application of the trace
method is relatively limited thus far, there has been con-
siderable experience with algebraic specification [4], [7],
[IO]. Also, algebraic specifications appear to be more
suitable for machine processing, and even compilation,
than trace specifications. Among the support software al-
ready implemented is the AFFIRM theorem prover [121.
Finally, languages such as HOPE [5] provide program-
ming languages very close in appearance to algebraic
specifications. A the present time, support software for
the trace methodology has not been developed.

VI. CONCLUSIONS
The specification methodology described in this paper

is important because it makes the trace language signifi-
cantly more useful. The methodology makes trace speci-
fications easier to read, write, and change, and provides
insight into the similarities and differences between mod-
ules. Recent specification of complex communications
protocols depended heavily on the methodology and in-
creased our confidence in its value. Finally, the method-

ology supports the straightforward building of models
which serve as consistency proofs and executable proto-
types.

Concerning model building, there are several areas
where more work is needed. Currently the Ip, nf, and v
functions are coded manually. By referring to the trace
specification, this is a straightforward task. We would
prefer, however, to have the model constructed partially
or entirely automatically. In Section IV-B, we mentioned
that Lisp-based automatic theorem proving tools could as-
sist in proving assertions about Lisp models. This claim
should be explored further. Based on manual proofs we
have already completed, we would like to be able to prove
mechanically that all the assertions of a specification are
true for its (proposed) model. Preliminary work has been
done on manual and automatic conversion of trace spec-
ifications into Prolog 161, [19], but more work is needed.

APPENDIX

Model Independent Functions

(defun L (t r)
(cond ((eq (nfdriver n i l t r) 'error) n i l)

(' t ' t)))

(defun V (t r) (v (nfdriver 0 (head t r)) (t a l l t r)))

(defun nfdriver (n f t r t r)
(cond ((n u l l t r) n f t r)

(' t (c o n d ((l p n f t r (l i s t (car t r))) (nfdriver
(nf n f t r (l i s t (car t r))) (cdr t r)))

(' t ' e r r o r)))))
(defun callnamep (t r n)

(' t n i l)))
(defun head (t r)

(cond ((and (eq (length t r) 1) (eq (caar t r) n) ' t))

(cond ((n u l l (cdr t r)) n i l)
(' t (cons (car t r) (head (cdr 1))))))

(defun t a i l (t r)
(cond ((eq t r n i l) n i l)

((e q (cdr t r) n i l) (l i s t (car t r)))
(' t (t a i l (cdr t r)))))

(defun emptytr (t r) (eq t r n i l))

Stack Functions

(defun l p (n f t r c)
(cond ((callnamep c 'push) ' t)

((and (callnamep c 'pop) (not (emptytr n f t r)) ' t))
((and (callnamep c 'top) (not (emptytr n f t r)) ' t))
(' t n i l)))

(defun nf (n f t r c)
(cond ((callnamep c 'push) (append n f t r c))

((callnamep c 'pop) (head n f t r))
((callnamep c 'top) n f t r)))

(defun v (n f t r c) (cadar (t a i l n f t r)))

Queue Functions

(defun l p (n f t r c)
(cond ((callnamep c 'add) ' t)

((and (callnamep c 'remove)

((and (callnamep c ' front)

(' t n i l)))

(not (emptytr n f t r)) ' t))

(not (emptytr nf t r)) . t))

HOFFMAN A N D SNODGKASS TRACE SPECIFICATIONS 1251

top:stack - integer
newstack: --t stack

semantics
pop(push(s,i)) = s
top(push(s,i)) = i

restrictions
s = newstack + failure(pop,s)
s = newstack - failure(top,s)

ACKNOWLEDGMENT
We would like to thank R. N. Horspool, Y. Wang, and

G . Yang for help in developing the Lisp models.

REFERENCES
111 A. L. Ambler et al., “GYPSY: A language for specification and im-

plementation of verifiable programs,” in Proc. ACM Con& Language
Design for Reliable Systems, ACM, Mar. 1977, pp. 1-10.

[2] W. Bartussek and D. L. Parnas, “Using assertions about traces to
write abstract specifications for software modules,” in Proc. Second
Conf. European Cooperation in Informatics. New York: Springer-
Verlag, 1978.

[3] R. S. Boyer and J. S. Moore, “Proving theorems about LISP func-
tions,” J . ACM, vol. 22, no. 1, pp. 129-144, Jan. 1975.

141 R. M. Burstall and J . A. Goguen, “An informal introduction to spec-
ifications using CLEAR,” in The Correctness Problem in Computer
Science, vol. 13.

[5] R.M. Burstall, D. B. Macqueen, D. T. Sannella, “HOPE: An ex-
perimental applicative language,” in Con$ Rec. 1980 LISP Conf.,
Aug. 1980, pp. 136-143.

[6] W. F. Clocksin and C . S . Mellish, Programming in Prolog. New
York: Springer-Verlag, 1981.

[7] N. H. Gehani, “Specifications: Formal and informal-A case
study,”Sojiwure-Practice and Experience, vol. 12, pp. 185-213,
Jan. 1982.

181 J . A. Goguen and J. J. Tardo, “An introduction to OBJ: A language
for writing and testing formal algebraic program specifications,” in
Proc. 1976 In!. Con& Parallel Processing, IEEE, 1976, pp. 176-
189.

[9] J. Guttag, “Notes on type abstraction,” IEEE Trans. Sojiware Eng.,
vol. SE-6, no. 1, pp. 13-23, Jan. 1980.

[IO] J . V. Guttag and J. J . Homing, “Formal specification as a design
tool,” in Con$ Rec. Seventh Annu. ACM Symp. Principles of Pro-
gramming Languages, ACM, 1980.

[l l] -, “The algebraic specification of abstract data types,” Actu In-
form., vol. 10, no. 1, pp. 27-52, 1978.

[I21 J. V. Guttag, E. Horowitz, and D. R. Musser, “Abstract data types
and software validation,” Commun. ACM, vol. 21. no. 12, pp. 1048-
1064, Dec. 1978.

[131 D. M. Hoffman, “Trace specification of communications protocols,”
Ph.D. dissertation, Dep. Comput. Sci., Univ. North Carolina, 1984.

[141 -, “The trace specification of communications protocols,” IEEE
Trans. Comput., vol. C-34. no. 12, Dec. 1985.

1151 M. E. Majster, “Limits of the ‘algebraic’ specification of abstract
data types,” SIGPLANNofices, vol. 12, no. 10, pp. 37-42, Oct. 1977.

[16] -, “Comment on a note by J. J . Martin in SIGPLAN Notices, vol.
12, no. IO,”SIGPLANNorices, vol. 13, no. 1 , pp. 22-23, Jan. 1978.

[I71 J . J . Martin, “Critique of Mila E. Majster’s ‘Limits of the algebraic
specification of abstract data types,’ ” SIGPLAN Notices. vol. 12. no.
12, pp. 28-29, Dec. 1977.

[I81 J. McLean, “A formal method for the abstract specification of soft-
ware, ” J . ACM, vol. 31, no. 3 , July 1984.

[191 J. M. McLean, D. Weiss, and C. Landwehr, “Executing trace spec-
ifications using Prolog,” Naval Research Lab., Tech. Rep. 1985.

1201 D. L. Parnas, “The use of precise specifications in the development
of software,” in Proc. IFIP Congress 1977. Amsterdam, The Neth-
erlands: North-Holland. 1977.

1211 D. L. Parnas and P. C . Clements, “A rational design process: How
and why to fake i t , ” IEEE Trans. Sojiware E n g . , vol. SE-12, no. 2 ,
pp. 251-257, Feb. 1986.

[22] C. A . Sunshine et al. , “Specification and verification of communi-
cation protocols in AFFIRM,” IEEE Trans. Sofware E n g . . vol. SE-
8, no. 5 , pp. 460-489, Sept. 1982.

Norton, 1984.

New York: Academic, 1981, pp. 185-213.

1231 R. Wilensky, LISPcraji.

(de fun nf (n f t r c)
(cond ((ca l lnamep c ’add) (append n f t r c))

((c a l l n a m e p c ’remove) (c d r n f t r))
((c a l l n a m e p c ’ f r o n t) n f t r)))

(de fun v (n f t r c) (c a d a r n f t r))

Traversing Stack Parse Function

(de fun p a r s e (tr)

(de fun p t l (tr) (s u b t r a c e t r

(de fun p c l (t r) (s u b t r a c e t r

(de fun p t 2 (t r) (s u b t r a c e t r

(l ist (p t l t r) (p c l t r) (p t 2 t r) (pd t r)))

1 (- (l e n g t h t r) (* 2 (c o u n t ’down t r)) 1)))

(- (l e n g t h t r) (* 2 (c o u n t ‘down t r))) 1))

(+ (- (l e n g t h t r) (* 2 (c o u n t ’down t r))) 1)
(c o u n t ’do& t r)))

(+ (- (l e n g t h t r) (c o u n t ’down t r)) 1)
(c o u n t ’down t r)))

(de fun s u b t r a c e (t r s 1)
(cond ((o r (l e s s p s 1) (l e s s p 1 1)) n i

(de fun pd (t r) (s u b t r a c e t r

((e q s 1)
(append (list (c a r t r))

(s u b t r a c e (c d r t r) 1 (- 1 1))
(’t (s u b t r a c e (c d r t r) (- s 1) 1)))

(de fun c o u n t (ca l lname t r)
(cond ((n u l l t r) 0)

(’ t (c o n d
((e q (c a a r t r) ca l lname)

(+ 1 (c o u n t ca l lname (c d r t r))))
(’ t (c o u n t ca l lname (c d r t r)))))))

Traversing Stack Functions

(d e f u n l p (n f t r c) (l p l (p a r s e n f t r) c))
(de fun l p l (p n f t r c)

(cond ((c a l l n a m e p c ’push) (empty t r (d p n f t r)))
((c a l l n a m e p c ’pop)

(and (n o t (empty t r (c l p n f t r)))
(empty t r (d p n f t r))))

((ca l lnamep c ’down) (n o t (empty t r (t l p n f t r))))
((c a l l n a m e p c ’ c u r r e n t)

((ca l lnamep c ’ to - top) ’t)
(’ t n i l)))

(n o t (empty t r (c l p n f t r))))

(d e f u n nf (n f t r c) (n f l n f t r (p a r s e n f t r) c))
(de fun n f l (n f t r p n f t r c)

(cond ((ca l lnamep c ’push) (append n f t r c))
((ca l lnamep c ’pop) (ti p n f t r))
((c a l l n a m e p c ’down) (append n f t r c))
((ca l lnamep c ’ c u r r e n t) n f t r)
((ca l lnamep c ’ to- top)

(’ t n i l)))
(append (tl p n f t r) (c l p n f t r) (t 2 p n f t r)))

(de fun v (n f t r c) (c a d a r (c l (p a r s e n f t r))))
(de fun tl (p n f t r) (c a r p n f t r))
(de fun c l (p n f t r) (c a d r p n f t r))
(de fun t 2 (p n f t r) (c a d d r p n f t r))
(de fun d (p n f t r) (cadddr p n f t r))

Unique Functions

(de fun l p (n f t r c)
(cond ((ca l lnamep c ’un ique) ’ t)))

(de fun nf (n f t r c)
(cond ((c a l l n a m e p c ’un ique) (append n f t r c))))

(de fun v (n f t r c) (l e n g t h n f t r))

Algebraic Stack Specification

syntax
push:
pop: stack - stack

stack x integer + stack

1252 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 14, NO. 9, SEPTEMBER 1988

Daniel Hoffman (S’83-M’84) received the B.A.
degree in mathematics from the State University
of New York, Bingharnton, in 1974. and the M.S.
and Ph.D. degrees in computer science from the
University of North Carolina. Chapel Hill, in 1981
and 1984, respectively.

From 1974 to 1979 he worked as a commercial
Programmer/Analyst. He is currently an Assistant
Professor of Computer Science at the University
of Victoria. B.C., Canada. His research area is
software engineering. with emphasis on software
specification

Richard Snodgrass received the B.A. degree in
physics from Carleton College, Northfield, MN,
in 1977 and the Ph.D. degree in computer science
from Carnegie-Mellon University, Pittsburgh, PA
in 1982.

He is currently an Assistant Professor at the
Department of Computer Science, University of
North Carolina, Chapel Hill. His research inter-
ests include temporal databases, programming en-
vironments, and distributed systems. He is the di-
rector of the SoftLab proiect, which is con- . -

cerned with the implementation of programming environments, database
management systems, and operating systems.

