
1. Introduction
Data in spatiotemporal databases is associated with multiple
dimensions. We will assume that there are three spatial
dimensions, namely the x- y- and z-dimension, and two time
dimensions, the valid-time and the transaction-time
dimension [J+94]. Spatial and temporal data are simply
special cases without the temporal and spatial dimensions,
respectively. We say that each of these dimensions is
recorded by an implicit attribute. Next, each piece of data has
also a number of regular attributes, termed explicit attributes.

Temporal, spatial and spatiotemporal queries are
inherently multidimensional as they combine predicates on
explicit attributes with predicates on time dimension(s) and/
or spatial dimension(s). In its simplest form, a temporal
query may combine the employee salary attribute with the
valid and transaction time dimensions, as in: “find all
employees with salary 50K on January 1st, 1997 as known
on March 15th, 1995.” Various temporal query combinations
are possible. For example, a query may specify a range of
salaries and a single time interval, or simply an interval on
each time-dimension. Even more combinations are possible
if spatial dimensions are added to form a spatiotemporal
query.

The evaluation of a query is greatly affected by the
query type and by the presence of various storage structures
and indexes. Hence most papers on these topics have focused
on a few specific query types.

In the past there has not been any unifying approach to
refer to spatiotemporal queries. Rather, individual works
used ad hoc approaches to refer to subsets of such queries,
sometimes employing conflicting or counter-intuitive
terminology, leading to considerable confusion. Some of the
most common spatiotemporal queries are selection-based.
These are queries applied on a single data set (a relation),
asking for all data objects (tuples) that satisfy the given query
predicate. Selections are the fundamental queries supported
by indexes. Even when indexes are employed for joins they
are frequently used for making selections. It was actually in

indexing papers, we first observed the terminological
confusion that subsequently motivated this work. In an
attempt to eliminate the problem, we propose a simple
notation for selection-based spatiotemporal queries. For
simplicity we initially assume a single explicit attribute;
however, our notation allows multiple explicit attributes via
a simple extension.

We note that there are other basic spatiotemporal
queries, like joins, unions, projections, aggregates,
constraints and differences, which our notation does not
cover. Our aim is not to address all possible kinds of
spatiotemporal queries (which would probably create a very
complex, hard-to-use notation resembling the creation of a
new query language!), but to provide an easy-to-use notation
for the most common queries we encountered. Our
formalism is at a very high level. We classify spatiotemporal
queries based on what the query predicates supply. We do
not specify how a query should be expressed, and we do not
classify queries based on their expressive power or time/
space complexity. Finally, granularity issues are outside the
scope of the proposed notation; instead each data value is
categorized based on a certain, given granularity of its data
domain. While being simple, our notation is also extensible
and can be applied to multidimensional queries in general.

Section 2 discusses the many previous approaches to
temporal query terminology, and Section 3 presents the
“core” of the proposed notation. Section 4 provides
examples of various queries to illustrate the use of the
notation. Section 5 discusses possible extensions to the core
and Section 6 concludes the paper.

2. Previous Terminology
The following discussion and examples focus on terms that
have been used in the past to refer to temporal queries. Such
terms have been found either as keywords in defining query
expressions [OS95] (for example: “as_of,” “intersect,”
“timeslice,” “when,” “from_time,” “to_time,” “valid_at,”
“valid_during”) or to describe a temporal query supported by
some temporal index.
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[AS88] compares the performance of various access
methods using a benchmark of sixteen temporal queries on
four databases (snapshot, valid-time, transaction-time, and
bitemporal). All benchmark queries are specified by a
declarative (select-from-where) query expression. A similar
approach is taken in [AS89].

[LS89, LS93] describe temporal queries by a
rectangular region in the (transaction) time-(surrogate)
attribute space. The term timeslice was used to refer to a
query that asks for data as of a given transaction time.

[KS89] discusses the performance of various methods
that index interval data. Two queries are identified in the
performance evaluation, one that asks for all objects whose
time interval intersects a given interval, and another that in
addition provides a range predicate on the explicit attribute
dimension. In [KS91] queries are defined as random
rectangles in the time-attribute space.

[EWK90, EWK93] discuss queries based on the WHEN
operator (find all objects whose time interval intersects a
given interval), aggregate functions at different time points,
and temporal selections that specify a condition on the
explicit attribute dimension and a time interval.

[DENS95] presents a benchmark for temporal databases
that is based on seven valid-time queries, four transaction-
time queries and twenty-eight bitemporal queries. These
queries are based on various combinations of basic range-
range, range-point and point-point operators (“range” refers
to attribute ranges or time ranges, and “point” refers to single
attribute values or time points).

[MK90, LM91] query versions, by specifying the
appropriate surrogate range and a version number. Versions
are closely related to transaction time. [BGO+96]
concentrates on two queries: the exact match query which
asks for the object with a given surrogate value in a given
version, and the range query which asks for all objects with
surrogates in a given range in a given version. [VV94]
discusses snapshot (or timeslice) queries (as in “find all
objects alive at some point in the past”), time-range queries
which are snapshots over a time interval, attribute-search
queries where an attribute value and a time point are
specified, and attribute-history queries where an attribute
value and a time interval are specified. In the special case
where the attribute is a surrogate (i.e., an attribute that does
not depend on time), the attribute queries are called key-
search and key-history respectively. [VV97] discusses the
key-search, key-range search (“find objects with surrogates
in a given range at some given time point”), key-history,
snapshot (timeslice) and time-range view (“find all objects
alive during a time interval”).

In [JMR91] queries based on timeslices are examined;
queries are specified in a form of relational algebra. In
addition to regular data, queries on data changes (as in “find
the employees who changed between two given time
instants”) are examined.

[TGH95, TK95] present efficient ways to reconstruct
past database states. The queries specify a past transaction
time and find all objects alive at that time (snapshot or
timeslice query). [TK95] also looks at the queries that find
all objects alive during a time interval and queries that find
the history of a given surrogate.

[GS93] classifies queries of interest into four categories:
ST queries that query the object surrogate attribute and time,
AT queries that query other object attributes and time, T
queries where only time is specified, and M
(“multidimensional”) queries for arbitrary conjunctions of
attributes.

In [ST94] the worst case performance of various
temporal indexes is examined using three basic temporal
queries: the pure-timeslice (find all objects whose intervals
contain a given time point), the range-timeslice (as the pure-
timeslice, but with an additional surrogate range predicate),
and the pure-key query that finds all the time intervals
associated with a given surrogate. A similar terminology was
adopted in [R97], where in addition the term pure-key-
timeslice was used for the query that specifies one surrogate
and one time point.

Valid-time database queries are similar to queries in
computational geometry. The simplest query that asks for a
set of dynamic intervals that contain a given valid-time point
is termed the dynamic interval management problem in
[KRVV93]. The term external dynamic 2-dimensional range
searching was also used. Valid-time queries are also
discussed in [NDK96] where three kinds of interval queries
are examined, namely the containment, inclusion and
intersection queries that find all objects whose valid-time
intervals contain, include or intersect a given interval.

[KTF95] addresses bitemporal queries and introduces
the terms bitemporal pure-timeslice (which asks for all
objects whose valid interval includes a valid-time point and
transaction interval includes a transaction-time point), and
bitemporal range-timeslice (where in addition a range on the
attribute domain is specified). There is also discussion about
the more complex bitemporal query where an interval is
specified in both the valid and transaction-time dimensions
and a range on the attribute dimension. [NDE96] calls this
query the general bitemporal query. [KTF97] addresses
various bitemporal queries and adopts the proposed
terminology presented here.

It is clear that much confusion already exists! At times
the same query has been given different names (like
snapshot, timeslice, pure-timeslice) or the same term (e.g.,
timeslice) has been used to describe different queries
depending on the application. A coherent terminology is thus
needed.

3. The Proposed Query Notation
We assume that each piece of spatiotemporal data has
associated a number of explicit attributes, a valid-time



attribute, a transaction-time attribute, and three spatial
attributes. We propose the following basic (“core”) notation
to classify spatiotemporal queries: Expl_attr // X_dimension/
Y_dimension/Z_dimension // Valid/Transaction. Double
slashes (“//”’s) separate the explicit attribute(s), the spatial
attributes and the temporal attributes. The idea to use
separate entries per explicit/implicit attribute was inspired by
the notation used for queueing system models, e.g., (M/M/1
systems) [K75].

3.1 The Core Notation
A BNF for the proposed notation follows:

The above notation specifies which entries are involved
in the query and in what way. The various values a qualifier
can take are explained below.

V : In an explicit attribute entry, V represents a single
attribute value provided by the query. In the valid and
transaction entries it corresponds to a single time instant
(slice). In the spatial entries it corresponds to the values of a
point’s spatial coordinates. V stands for “single Value.”

R : In the explicit attribute entry, R corresponds to a
specified range of attribute values. In a temporal entry it
represents a continuous time interval. In a spatial entry it
represents an interval on the spatial coordinate. R is an
abbreviation for “Range.”

S : In an explicit attribute entry, S corresponds to a set of
ranges of attribute values given in the query. In a temporal
entry it represents a set of time intervals (or equivalently, a
set of specific time instants). The letter “S” comes from “Set
of intervals.” In a spatial entry it represents a set of intervals
on the spatial coordinate.

* : The occurrence of “*” as a qualifier value indicates a
trivially true predicate, i.e., that any value is accepted in this
entry to satisfy the query (equivalently, it indicates the
absence of a selection predicate on this attribute).

− : The occurrence of “−” as a qualifier value indicates
that the data does not include the associated attribute, making
the entry inapplicable.

3.2 Discussion
In an effort to keep the core notation simple, we have chosen
to include only notation for the types of queries that are
considered frequently. However, it is extensible. Additional
aspects of temporal, spatial or spatiotemporal queries can be
covered through extensions that preserve the core notation as
a special case. Section 5 provides examples of some of the
possible extensions.

The core notation considers only conjunctive queries,
i.e., the slash-separated terms are ANDed together. It is
possible to extend the notation to also allow explicit
disjunctions and negations.

Query predicate qualification on the explicit attribute
uses exact value match or value containment. Thus, if a point
is specified on the explicit attribute entry, the returned data
should have their attribute matching the given value. If an
explicit attribute range is instead specified, the returned data
should have attribute values inside the given range. If a set of
ranges is specified, the results should have attribute values
inside this set of ranges.

Qualification for a temporal or spatial dimension can be
more general here because data is associated with an interval
and not a single value. The core notation makes the common
assumption that query qualification on a temporal (spatial)
dimension is based on time-instant (point) containment and
interval (interval) intersection. For example, a query that
specifies a time instant on the transaction-time entry and a
time interval on the valid-time entry asks for data whose
transaction-time interval contains the given time instant and
whose valid-time interval intersects the given time interval.
If the query specifies a set of intervals in the valid-time entry,
it asks for data whose valid-time interval intersects any of the
intervals in the set. It is possible to also introduce extensions
supporting any other of the variety of existing predicates
involving periods, points, or both, e.g., CONTAINS,
CONTAINED_IN, PRECEDES, and MEETS (for example,
“find all objects with intervals before a query time point/
interval” or “find all objects with intervals contained in a
given interval” [BO95, NDK96]).

The S qualifier is clearly more powerful than V or R (for
example a set can be specified as a union of ranges) and can
thus be used in place of the other two. However, the notation
includes all three qualifiers because of their frequent use in
spatiotemporal queries.

The proposed notation distinguishes among three kinds
of attributes, namely explicit, temporal and spatial attributes.
We followed this approach in order to identify the basic parts
in a spatiotemporal query, i.e., the temporal (valid time,
transaction time), spatial (latitude, longitude and elevation)
and explicit attributes. A similar approach can also be

<spatiotemporal query> ::= <expl. attr> “//” <space qualifier> “//”
<time qualifier>

<spatial query> ::= <expl. attr> “//” <space qualifier>

<temporal query> ::= <expl. attr> “//” <time qualifier>

<expl. attr> ::= <qualifier> | <qualifier> “/” <expl. attr>

<space qualifier> ::= <x qualifier> “/”<y qualifier> “/”<z qualifier>
<x qualifier> ::= <qualifier>
<y qualifier> ::= <qualifier>
<z qualifier> ::= <qualifier>

<time qualifier> ::= <valid> “/” <transaction>
<valid> ::= <qualifier>
<transaction> ::= <qualifier>

<qualifier> ::= V (single Value: point)
 | R (Range: time interval)
 | S (Set: set of intervals)
 | * (any value)
 | − (not applicable)



applied to more general multidimensional queries. However,
note that while temporal dimensions have a deep conceptual
theory distinguishing them from other dimensions, in a
general multidimensional query there may not be a firm
delineation between spatial and explicit dimensions. If
spatial dimensions are of importance (for example if special
spatial predicates are used in the query), the space qualifier
part should be included in the query notation (and maybe
extended to include the new predicates). Non-spatial
dimensions can then be represented as multiple explicit
attributes. The core notation allows for adding explicit
attributes; they should be separated by a “/” (single slash)
and precede any time or spatial dimensions. If spatial
dimensions are not treated differently (or if they do not exist
in the query of interest) then all non-temporal attributes
should be represented as regular explicit attributes (and the
space qualifier is dropped from the notation). For example, if
queries are based on two explicit attributes, Name and
Salary, a temporal V/R//V/* query indicates a specific name,
a range of salaries, a specific valid time and any transaction
time.

Finally, granularity issues are not part of the notation.
Instead, we assume a certain, given granularity for each of
the involved domains of the underlying data; any value that
is coarser than that granularity denotes a range, and any value
that is the same (or of finer) granularity denotes a single
value or point.

4. Examples
We first illustrate the proposed notation with various
temporal query examples on a bitemporal data set. Examples
for the spatiotemporal domain follow. The time-instant
(point) containment and interval intersection qualifications
are assumed.

4.1 Temporal Queries
The queries are over the relation Employee(Name, Salary)
and are based on a single explicit attribute (the surrogate
attribute, Name) and the temporal dimensions. Thus three
entries are needed: Expl_attr//Valid/Transaction. Each
query is followed by its representation in the proposed
notation and a discussion.

Query 1: What salary does Bob make? (Equivalently,
what salary does Bob currently make, as best known?)

Notation: V//V/V

The explicit attribute qualifier is a single value (Bob); the
valid-time qualifier is also a single value (now); and the
transaction-time qualifier is a single value (now). The result
will include all objects with a given name and whose valid-
time interval contains the given valid time (now) and whose
transaction-time interval contains the current time (now). On
a conventional relation we would have: V//−/− because the
relation includes neither valid nor transaction time. On a
valid-time relation: V//V/−, while on a transaction-time

relation: V//−/V.

Query 2: List the current employees whose name starts
with “B”.

Notation: R//V/V

This query uses a range qualifier on the explicit attribute.

Query 3: List the current employees.

Notation: *//V/V

All values are allowed for the explicit attribute. All objects
that contain the given valid time instant (now) as of the given
transaction-time instant (now) will be returned. This is an
example of the bitemporal pure-timeslice of [KTF95]. On a
transaction-time database, a *//−/V query is an example of a
pure-timeslice query [ST94, TK95] or the snapshot of
[VV97].

Query 4: List the history of employees whose name starts
with “B”.

Notation: R//*/V

The transaction-time qualifier is a single value (now, as best
known), but all values of the valid time are relevant. Note
that this is a different query than R//−/V, which is on a
transaction-time database (no valid-time exists). The latter is
an example of the range-timeslice query [ST94].

Query 5: What was Bob’s salary history for 1990−1996?

Notation: V//R/V

Here an interval of valid time is requested. The transaction-
time qualifier is again a single value (now, as best known).
Similarly, we may ask for Bob’s salary history for 1990−
1996 as best known on (transaction time) Jan. 1, 1997.

Query 6: What was Bob’s salary for 1990−1992 and
1994−1996?

Notation: V//S/V

Information over a set of intervals, or a temporal element
[GV85], is requested.The transaction time is again a single
value (now, as best known).

Query 7: When was Bob’s salary recorded (perhaps
erroneously)?

Notation: V//V/*

This is a single-value query over the explicit attribute (Bob)
and valid time (now); all transaction times are requested.
Note that this is a different query than V//V/− as the former is
on a bitemporal database (and any transaction-time
qualifies), while the latter is for a valid-time database (where
no transaction-time exists and hence there are no past
database states to be queried).

Query 8: What changes were made during 1996 to Bob’s
salary for May 11, 1997?

Notation: V//V/R



An interval of transaction time is requested. The V on the
valid entry is the single value of current time.

Query 9: What changes were made during 1996 to Bob’s
salary history?

Notation: V//*/R

The word “history” implies that we are interested in all valid
times, with transaction time restricted to the interval of 1996.

4.2 Spatiotemporal Queries
To illustrate spatiotemporal queries we use a bitemporal two-
dimensional spatial relation Precipitation(Kind, Amount)
with a surrogate of Kind. Queries are based on the surrogate,
temporal and spatial dimensions. Hence six entries are used:
Expl_attr//X_dimension/Y_dimension/Z_dimension//Valid/
Transaction. However since there are only two spatial
dimensions in this database, the third spatial entry
(Z_dimension) is occupied by “−”.

Query 10: What is the rainfall at Bob’s house today?

Notation: V//V/V/−//V/V

Here “rainfall” is a single-valued qualifier on the explicit
attribute (Kind). “Bob’s house” is a single-valued qualifier in
each of the x and y dimensions; the z dimension (altitude
above sea level) is not relevant, since the relation records
only two dimensions. The valid-time and transaction-time
qualifiers are restricted to the current time.

Query 11: What is the amount of precipitation at Bob’s
house today?

Notation: *//V/V/−//V/V

The precipitation can be of any Kind, hence any value is
accepted on the explicit attribute.

Query 12: What is Tucson’s rainfall today?

Notation: V//R/R/−//V/V

“Tucson” indicates a range in both the x and y axes, i.e., a
rectangular region in two-space; “rainfall” indicates a single
value for the explicit attribute. The word “today” implies
single-valued qualifiers in both valid and transaction time.

Query 13: What is the history of Tucson’s rainfall this
year?

Notation: V//R/R/−//R/V

The terms “history” and “this year” imply a range qualifier
in valid time.

Query 14: What is the rainfall today for the North
American and European continents?

Notation: V//S/S/−//V/V

Two continents imply qualifying over a set of two-
dimensional spatial rectangles, hence element is indicated.

Query 15: What changes were made to the history of
Tucson’s precipitation, and when were they made?

Notation: *//R/R/−//*/*

Here “changes” implies all of transaction time; “history”
implies all of valid times and “precipitation” implies all
explicit attribute values.

4.3 Comparison with Previous Terminology
The table in the next page presents the correspondence
between some of the previous temporal query terms and the
new notation.

5. Extensibility Issues
The core notation can be extended in various ways to address
additional aspects of queries in the specialized settings where
this is necessary. One such extension/generalization of the
core notation addresses queries with general temporal
predicates (i.e., not only with point containment and interval
intersection). In particular, the valid and transaction time
qualifiers of the core notation can be extended to:

<valid> ::= <temporal_predicate> <qualifier> | <qualifier>

<transaction> ::= <temporal_predicate> <qualifier> | <qualifier>

Various combinations of temporal_predicates and
qualifiers are possible. For example, Allen's [A83] well-
known predicates or derivations of these (that often are more
useful in practice) can be allowed in place of
temporal_predicate. Doing this, we associate a single
temporal predicate with each temporal qualifier in a query.
As an example, assume the CONTAINS temporal_predicate
is denoted by c and the FOLLOWS temporal_predicate by f.
Then consider the query:

Query 16: “What was Bob’s salary history after 1990?”

Notation: V//fV/cV.

Here a single value is given for valid time and for the
transaction-time (as best known now is assumed).

Depending on the selection criteria, other more complex
predicates can also be incorporated [V82, L86].

Another possible extension is the inclusion of explicit
disjunctions and negations. In a similar way, we can add
before each qualifier a predicate that specifies whether the
qualifier is to be used in the query specification with an
AND, OR or NOT.

Other extensions could be envisioned, for operations
such as joins, and for specifying the result desired (e.g., all
attributes or just a few attributes). Another interesting
extension is to allow for constraints of variables with respect
to other variables.

6. Conclusions

The absence of a common terminology for temporal, spatial
and spatiotemporal queries has led to much confusion in the
past. In an effort to eliminate this problem, we introduced a

query notation that associates with each portion of the



selection criteria (be it one or more explicit attribute values,
spatial dimensions, or temporal dimensions) a descriptive
entry. Query qualifications in the core notation included
point containment and interval intersection. Our notation is
simple, general and extensible, while it captures many of the
distinctions made by previous terminology, which was
inconsistent and ambiguous. It can also be easily applied to
multidimensional queries in general.
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