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Abstract—Interconnection networks are increasing in im-
portance as node counts increase in high-end machines. To
achieve better application performance, newer supercomputers
frequently have interconnects with more connections, higher
bandwidth, and lower diameter. One example of such an inter-
connect is a dragonfly topology, which has appeared in multiple
recent supercomputers. Adaptive routing and high bandwidth on
dragonfly networks leads to the belief that sharing of the network
between jobs will not lead to performance degradation.

In this paper, we analyze the performance of a production HPC
application, MILC, on a dragonfly-based Cray supercomputer.
We find that, in fact, the performance of MILC varies by a factor
of more than three, and that the performance variation is due
to communication delays from network interference. First, we
analyze a communication trace of MILC to relate per-rank delays
to network activity. Then we use machine learning to develop a
predictive model for runtime based on network counters. Our
model performs well, with a mean squared prediction error of
0.22.

Index Terms—dragonfly networks, inter-job interference

I. INTRODUCTION

Optimizing high performance computing (HPC) applica-
tions at large scale is a labor-intensive effort, often requiring
rewriting code to increase data locality, identifying regions
for GPU optimization, overlapping communication and com-
putation, and more. However, applications are usually run in
an environment where they must share resources, sometimes
causing performance degradation greater in magnitude than
the improvement from performance tuning. Examples of such
interference include jitter arising from operation system dae-
mons [1], [2], [3], [4] and competition for I/O systems.

Since most applications are communication-bound, an es-
pecially problematic type of interference is competition from
other jobs using the communication network [5], [6]. Recent
network interconnects, such as fat-tree [7] and dragonfly [8],
have been designed specifically to remedy such communica-
tion contention. Both of these interconnects have a constant
number of worst-case hops along shortest paths and combine
high bandwidth and adaptive routing to reduce the negative
effects of congestion. In theory, these designs allow jobs to
share the network obliviously, but in reality this is not the
case.
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Fig. 1: Execution time for MILC over runs in the batch queue
spanning several months.

Consider Figure 1, which shows the execution time of
the production HPC application MILC [9] for different runs
between April 2016 and October 2016. The runs were executed
on a machine with a dragonfly network, NERSC’s Edison, in
the batch queue. All runs used the same number of nodes and
cores per node and the same input size, yet the variance in per-
formance over different dates is large. For the best performing
runs, the runtime was between 300 and 320 seconds; during
the worst run—on August 4, 2016—the runtime was over 700
seconds.

In this paper, we analyze this variability and find we can
attribute it to delay in communication due to heavy network
traffic. Specifically, we execute MILC under typical batch
job conditions and collect network hardware counters in each
timestep to measure network traffic. We use machine learning
to develop a predictive model for runtime given these counters,
and demonstrate that there is a strong relationship between the
amount of traffic on the network and the amount of slowdown
that occurs. In addition, we analyze a fine-grain trace of
MILC to understand the source of the slowdown and attribute
per-rank communication delays to network links experiencing
unusually heavy load.

The contributions of this paper are as follows:
• We provide a fine-grain analysis of communication per-



formance in MILC, discovering that certain links are
more heavily-loaded despite high bandwidth and adaptive
routing, and ranks communicating over these links often
experience large communication delays.

• We provide a coarse-grain analysis of overall perfor-
mance in relation to network activity around a job.
In particular, we use machine learning to develop an
accurate predictive model for execution time based on
network counters, with mean squared error of 0.22.

• We conclude that slowdown in our experiments is due
primarily to contention for the network from other jobs,
which establishes that the behavior of dragonfly networks
is, unfortunately, similar to that of earlier interconnects
(e.g., tori) in this regard. Specifically, performance in the
presence of network contention degrades by more than
a factor of three in the worst case, similar to previous
results on tori [6].

To the best of our knowledge our work is the first to study
inter-job contention on a real dragonfly installation rather
than in simulation and to quantify the effect of network
contention using hardware counters. Our work suggests that
different network designs or communication-aware scheduling
algorithms are still needed.

II. BACKGROUND

This section covers the necessary background for the rest of
the paper. In turn, we discuss variability in computer systems
and the dragonfly network.

A. Variability

Variability in computer systems is an increasingly impor-
tant topic. With the increasing complexity of chips, software
systems, networks, and the environment, variation within and
between executions of the same program has become com-
monplace. This variation causes several problems beyond the
obvious waste of valuable supercomputer time. For example,
studying performance implications of program optimizations is
complicated by variance. From the users’ and administrators’
perspective, it also complicates estimating the time required
for batch jobs and allocation requests for proposals.

One oft-discussed form of variance, especially in high-
performance computing, is operating system (OS) noise [3].
With OS noise, a system daemon interrupts at least one core
on the system to do its work. From the point of view of
the application program, the interrupt time acts exactly as
extra computation time. This can have especially negative
effects downstream in programs that synchronize at a fine
granularity [10], [4]. Several researchers have studied OS noise
empirically and in many cases offered solutions (e.g., low-
noise operating systems [11]) to reduce or eliminate the effects
of OS noise.

However, even with a low-noise OS, there can be many
other contributors to variance on a supercomputer. In this
paper we primarily focus on the effects of network variability,
which means that application performance varies because of

contention from other jobs using the shared network infras-
tructure. Network contention can in some cases be eliminated;
for example, the Blue Gene approach guarantees each job an
isolated piece of the machine with its own dedicated network.
The problem with this approach is that it can greatly reduce
system utilization. Therefore, the recent trend has been to share
the network between jobs on even the highest-end machines.

B. Dragonfly Network and Adaptive Routing

The dragonfly topology is an architecture that has been
proposed to greatly reduce interference when jobs share the
network. Because of its believed benefits, it is becoming a
popular choice for interconnection networks in post-petascale
supercomputers [8]. In this paper, we focus on Cray Cas-
cade [12] (or Cray XC30), one of the implementations of the
dragonfly topology.

Figure 2 illustrates the dragonfly topology of the Cray
Cascade. The Cray Cascade uses a 48-port network router for
connecting nodes in a two-level hierarchy, achieving a low-
diameter and high network connectivity. Eight out of the 48
ports are used for connecting four nodes to the router. The
remaining 40 ports are used for intra- and inter-group links.
There are 96 routers connected together to form a group,
arranged in a 16 × 6 grid. Sixteen routers in each row are
connected in an all-to-all manner by so-called green links, and
six routers in each column are also connected in an all-to-all
configuration by black links. The remaining ports are used to
connect to routers in other groups via blue links.

The Cray Cascade uses adaptive routing to utilize band-
width. In adaptive routing schemes, each router has multiple
paths to choose from for any given message. Some paths are
minimal in number of hops and others go indirectly through
a third group. Based on the amount of load on the minimal
paths, the router may randomly select one of the other paths
along which to send messages. This random scheme acts to
load balance traffic.

III. MILC

In order to study the effects of network contention on
a dragonfly network in real-world conditions, we select a
current production scientific application, MILC. We select
MILC because it is load-balanced, performs a common type
of communication pattern, and spends a significant amount
of time in communication. MILC stands for MIMD Lattice
Computation and is used to study quantum chromodynamics
using numerical simulations [9]. We use the MILC application,
su3_rmd, which is distributed as one of the benchmarks in
the NERSC-8 Trinity benchmark suite [13].

In su3_rmd, MPI processes are arranged in a four-
dimensional Cartesian grid for domain decomposition of
space-time points. In order to understand the fine-grain trace
analysis we present in Section VI, we describe the com-
munication pattern in detail here. A timestep (shown in
Algorithm 1) contains alternating computation/communication
(nearest-neighbor) phases, followed by a global reduction
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Fig. 2: The dragonfly interconnect.

Algorithm 1 Overall structure of MILC.

1: for t = 1 to NUM_TIMESTEPS do
2: for i = 1 to 2500 do
3: First 8-way neighbor exchange + computation
4: Second 8-way neighbor exchange + computation
5: MPI_Allreduce(...)
6: end for
7: end for

Algorithm 2 Communication pattern between Allreduce invo-
cations. For simplicity, only two dimensions (instead of four)
are shown and some details of the code are elided.

1: MPI_Allreduce(...)
2: for exchange = 1 to 2 do
3: for size = SMALL, LARGE do
4: // send negative direction
5: MPI_Irecv(..., &req1) // +x, size
6: MPI_Isend(..., &req2) // -x, size
7: MPI_Irecv(..., &req3) // +y, size
8: MPI_Isend(..., &req4) // -y, size
9: computation

10: // same in positive direction
11: end for
12: for req = all requests in order of invocation do
13: MPI_Wait(req)
14: computation
15: end for
16: end for
17: MPI_Allreduce(...)

that computes a summation. This pattern is repeated several
thousand times and is the dominant cost in MILC.

Details on the computation and communication are shown
in Algorithm 2. In the communication pattern, each rank posts
a series of MPI_Irecvs and MPI_Isends to exchange two
messages with each of its neighbors. It then calls MPI_Wait
on all the requests in order. This pattern repeats, and all ranks
call MPI_Allreduce.

IV. EXPERIMENTAL SETUP

This section describes our experimental setup. In turn we
discuss details of Edison, the experiments, and the network
counter infrastructure.

A. Edison Details

In this paper, we focus on Edison, which is a Cray XC30
installation at National Energy Research Scientific Computing
Center (NERSC). Edison has 15 groups of 96 routers, with
384 nodes each. There are some site-specific variations to the
Cray Cascade topology on Edison. Since there are more ports
available than actually needed for this small installation, three
black links are used to connect each pair of routers in the
intra-group columns. In addition, six four-link bundles of blue
links are used between each pair of groups.

Edison has a total of 5576 compute nodes, each containing
24 hyperthreaded cores (two 12-core Ivy Bridge processors).
The remaining nodes are reserved for login and I/O. Each node
has 64 GB of RAM and three levels of cache, divided into a
private L1 and L2 of 64KB and 256KB respectively, and a
shared, 30 MB L3. The total global bandwidth of Edison’s
dragonfly is 23 TB/s global bandwidth.

There are four adaptive routing algorithms available on
XC30 systems; in our tests, the default routing algorithm on
Edison is used.

B. Experiment Details

In this paper, we ran the experiments as follows. We ran
MILC as a flat MPI program with 6144 processes, spread over
384 nodes and 16 cores per node. The input size we used
was 64×64×64×96, with 80 timesteps total. The “warmup”
timesteps used four trajectories and five steps per trajectory,
while the “regular” timesteps used four trajectories and 15
steps per trajectory.

We always requested 384 nodes for our job to execute
because it is the exact size of one group. We ran the application
over whatever nodes we were assigned. This means that our
job could run on anywhere between one group and all groups,
though in practice we were always assigned between two and
14 groups in our experiments. The nodes that our job received
competed with another job in at least one group in every one
of our experiments.

C. Network Counter Details

In our experiments, we periodically collected network hard-
ware counters from Edison’s routers. Because an application
on Edison only has access to the counters recorded on the
router(s) it is attached to, we were only able to collect counters
from MILC’s routers for our analyses.

Specifically, we collected flits (the smallest-sized packets
sent on the network) and stalls (incurred on flits when they



cannot be forwarded from the router). Note that the larger
messages that applications send are broken up into flits to be
transmitted over the network and that all flits are of uniform
size. On Edison, the counters are collected at every router on
a per-link basis. The flits counter for a link records how many
incoming flits were received on that link, and the stalls counter
is incremented every time a flit received on that link incurs
a stall while waiting to be forwarded. Together, these metrics
give an idea of the congestion on a link.

V. OVERALL RESULTS

This section provides overall results of our MILC ex-
periments. Specifically, we discuss the overall variability in
computation and communication time across runs of MILC
and discuss the impact of how nodes are placed onto groups
on Edison.

A. Overall Variability in MILC

We provide a general breakdown of computation and com-
munication times for MILC in Figure 3. The left-hand graph
shows an error-bar plot of computation and communication
times across ranks in our runs of MILC. Generally, this graph
shows that best-case runs of MILC have about a 60-40 split
between computation and communication time.

To avoid computational noise in our experiments, we used
only 16 cores out of the 24 available on each Edison node,
and we excluded the first and last cores on each socket
(following the advice of Petrini et al. [3]). Our runs all show
consistent computation performance, where the computation
times of ranks range from 197 seconds to 217 seconds, with
median 208 seconds. From this we conclude that OS noise
is not responsible for the observed time variability. Since
computation time is consistent across our runs, the variation
in total runtime is due to communication, as can be seen in
Figure 3.

The right-hand graph shows the contribution of the domi-
nant MPI calls in MILC. Here, it is clear that two calls repre-
sent roughly 80% of the communication time: MPI_Wait and
MPI_Allreduce. This is because MILC uses non-blocking
operations for the point-to-point messages, so most of the
communication time is accumulated in calls to MPI_Wait and
MPI_Allreduce. The leftmost bar of the graph shows the
breakdown for a run of MILC which had an elevated execution
time. In this case, MPI_Wait and MPI_Allreduce calls
account for almost 95% of the time spent in MPI.

B. Impact of Group Placement

We briefly consider the possibility that for a fixed number
of nodes, an increase in the number of groups over which
those nodes are allocated may increase execution time. On
other architectures (e.g., tori) contiguity of placement has an
impact on performance. In theory, placement on a dragonfly
should have little impact since minimal paths are at most five
hops, and the inter-group bandwidth is high.

Figure 4 shows the variation in performance as a function
of the number of groups. It appears that the number of

groups has no direct impact on performance. We observe that
scheduling policies that attempt to minimize number of groups
are therefore not sufficient to avoid performance degradation.

VI. FINE-GRAIN ANALYSIS

This section provides analysis of a detailed MPI communi-
cation trace of the application to determine the likely cause of
communication variation.

A. Analysis of MPI_Wait Times

In our experiments, we observed a wide range of execution
times for MILC; Figure 4 shows the overall variation in run
time. We see that the worst-case MILC execution time is a
factor of 2.2 slower than the best-case time. At the scale of
individual timesteps, the factor is 3.6, which serves as an upper
bound for overall slowdown in our experiments.

As mentioned above, the slow execution is due to ex-
tra communication time, specifically in MPI_Wait (and
MPI_Allreduce by extension). In order to better understand
what happens across ranks at individual calls to MPI_Wait,
we took detailed traces of the pattern shown in Algorithm 2
(see Section III) in several executions of the program. Because
MILC makes so many communication calls in an execution,
the memory overhead of capturing a complete trace is pro-
hibitive. Therefore, we kept track of traces for the longest-
running and shortest-running reductions in each execution and
saved only those traces. In the seven executions we traced, the
shortest reduction time was always less than a millisecond,
and the longest reduction time varied from 5-71 milliseconds.
We examine the period between reductions for the worst-case
(71 millisecond) reduction and the corresponding best-case
reduction in the same run.

First, we find that in the fast period, the MPI_Wait
times for all messages are well below 1 millisecond. In the
slow period, many ranks have MPI_Wait times above this
threshold, with the worst case MPI_Wait time almost 35
milliseconds. Figure 5 shows the times per rank at an example
MPI_Wait call in the code.

An inflated MPI_Wait time at rank A could be caused
by one of two things: (1) the partner rank for A posted the
matching MPI operation after A arrived at the MPI_Wait, or
(2) the partner rank posted the matching MPI operation before
A arrived at the MPI_Wait, but the communication itself
was slow. Unfortunately, we cannot order events on different
nodes relative to each other, so we cannot determine directly
whether a partner posted its MPI_Isend or MPI_Irecv on
time. However, because the size of the second message to each
neighbor is 18KB, the rendezvous protocol is used for the
MPI_Isend. Therefore a rank may block when MPI_Wait
is invoked on a previous MPI_Isend as well as a previous
MPI_Irecv, and we determine that a delay falls into case
(2) if both the sender and receiver of the given message block
(see Figure 6).

Recall that in our experiments we used 16 MPI ranks
per node, typically with 4 nodes per router. Therefore some
communication occurs between ranks located on the same
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Fig. 3: Breakdown of computation and communication times. On the left is overall time spent on computation and
communication per rank in our experiments. On the right is time in the most commonly invoked MPI calls.
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Fig. 4: Variation in performance given the number of groups.
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Fig. 5: Example MPI_Wait times per rank at one neighbor
exchange of our trace.

node or on nodes connected to a common router. Due to the
way the problem grid is mapped to ranks, most neighbors in
the x-dimension fall on the same node (see the blue arrows in
Figure 7). As expected, we see no delays at the first message
exchange in this dimension. However, many neighbors in the
y-dimension, and all neighbors in the z- and t-dimensions, fall

Isend

Wait
A

B

Wait (A delayed)
A

B

Irecv

Irecv

Isend Wait

(1)

(2)

(A and B delayed)

Wait

Fig. 6: Two possible reasons for delay on an MPI_Wait.

on different nodes (the red arrows in Figure 7 illustrate the y-
dimension neighbors). At the first message exchanges in these
dimensions we see MPI_Wait times up to 35 milliseconds.
Table I gives a breakdown of delays due to a partner arriving
late (one-sided delays) and delays due to slow communication
(two-sided delays).

(i−1,j)

Isend (−x)

Irecv (+x)

Irecv (+y)

Isend (−y)

Router (i, j)

Core

Node 2

Node 0 Node 1

Node 3

To Router

Fig. 7: MILC communication pattern, as mapped to nodes.

We find that many ranks experience one-sided delays. Some
are due to the partner rank absorbing the delay at a previous
MPI_Wait. Others must be due to the partner rank arriving
late, as discussed above. Because all ranks spend a consistent
amount of time in computation up to that point in the trace,
those partner ranks must have been late in leaving the previous



MPI_Allreduce. Because MILC experienced significant
communication slowdowns on the previous few reductions, it
is likely that communication in the MPI_Allreduce itself
was delayed, causing some ranks to exit late. In any case,
we also see many delays due to slow communication between
neighbors (these include the largest delays), and we explore
these further by analyzing performance counter data from the
network during the trace period.

Neighbor type Delay type Delayed pairs Max delay (ms)

On node 0
3072 pairs

On router Late partner 1536 9.76
1968 pairs Slow comm. 0

Same group Late partner 3203 9.74
11,040 pairs Slow comm. 239 7.5

Different groups Late partner 382 21.88
2352 pairs Slow comm. 736 34.78

TABLE I: Summary of delays at the first y-, z-, and t-
dimension exchanges. There are a total of 18,432 (6144×3)
ordered pairs of communicating ranks. Times for two-sided
delays are reported as the minimum of the receiver’s delay
and the sender’s delay on a given message.

B. Analysis of Network Counters

Figure 8 shows the relationship between MPI_Wait times
in the first off-node message exchanges and the network coun-
ters for the links between the communicating ranks. Because
(1) we only have the network counters for MILC’s routers,
and (2) the paths along which messages are routed are non-
deterministic (because of adaptive routing), we do not have
global data and cannot locate exactly which links are used for
the messages sent by our MILC application. However, many
of the off-node neighbors lie in the same row or column of the
same group and therefore have a direct link between them. In
the absence of contention for that link, messages should always
be routed across it, which simplifies our analysis. Therefore,
in the figure we show only those pairs of ranks that lie in the
same row or column. Omitted here is a graph of MPI_Wait
times vs. total number of flits on the rank’s router; it looks
similar but the shape is less pronounced.

Clearly, there is not a linear relationship between
MPI_Wait time and the number of flits on the network.
However, below a certain threshold of flits on the connecting
link, MPI_Wait times are always small (near zero). Above
that threshold, there is an increasing probability that a rank
will be delayed. Evidently when there is competition for the
network near a rank (as indicated by higher-than-usual flits),
that rank may experience a significant delay while its messages
are delivered. We see many such delays in this trace. There
are several possible reasons why some other ranks do not
experience delays despite having nearby network competition:

1) The adaptive routing scheme successfully routes the
communication along a less congested path.
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Fig. 8: MPI_Wait time at the first set of off-node neighbor
receives vs. flits on the connecting row or column link. Only
ranks with a direct link to each other are shown, and ranks
with late partners are omitted.

2) The other application(s) competing for the network have
distinct computation and communication phases, and
these application(s) are in a computation phase.

3) The messages of the other application(s) competing for
the network do not happen to collide with the fast rank’s
messages.

It is possible that all of these occur here. Evidence of numbers
2 and 3 is discussed more below.

We omit figures of MPI_Wait time vs. stalls because
they do not show a clear relationship. One reason is that the
stall counter that we collect does not indicate which outgoing
port(s) cause the stalls. Another is that we have no way to
determine if the stalls are incurred on MILC’s traffic or other
jobs’ traffic. In addition, high stalls on a link trigger the
adaptive routing to choose alternate (indirect) paths, making
the expected relationship between stalls and time unclear.

For reasons of space, we do not analyze other traces in
detail here. However, the execution with the second-longest
reduction showed very similar results to the one discussed
above.

Finally, we consider the counters for our other traces over
the entire period between two consecutive reductions. Figure 9
shows the distributions of flits across all links for both the best-
case and worst-case such periods, over seven execution traces.
Across runs, there is not a linear relationship between total
flits and runtime, which suggests that the rate of background
traffic not attributable to MILC is highly varying over time.
However, a general relationship between total flits and runtime
holds with the exception of one anomalous run (the second
one). The 57-millisecond period is due to a single long delay
on one pair of nodes in the second 8-way neighbor exchange.
Because the nodes are attached to the same router, we believe
that an anomalous event happened on this router or one of
the nodes. We cannot account for the three-millisecond period
with inflated flits, but we did not see such behavior in any
of our other traces. We believe that the high flits are due to
competing job(s) sending voluminous traffic over the network



during a short time when MILC was not communicating.
However, we are not able to obtain information at a fine
enough granularity to verify this.
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Fig. 9: Distributions of flits across all links for minimum and
maximum reduction traces in seven runs. Each pair of bars
shows the two traces from a given run.

VII. COARSE-GRAIN ANALYSIS

In this section, we employ machine learning techniques for
a coarse-grain analysis. As seen above, there is a relationship
between per-rank communication time and network counter
data within a single communication period of MILC. Here,
we demonstrate that a relationship exists between execution
time and network counter data across all executions of the
program.

A. Predictive Modeling

Figure 10 shows an execution of MILC broken into its con-
stituent timesteps (warmup timesteps are omitted for clarity).
Each timestep of MILC does a uniform amount of work and
should take a uniform amount of time, with the exception of
every fifteenth step, in which MILC does extra computation.
However, in many executions we see highly varying runtime
per timestep. Since it is impractical to capture sufficiently fine-
grain counter and MPI data for an entire execution, we capture
counters at the end of each timestep. Our goal is to fit a model
that predicts timestep runtime given these counters.

There are several reasons why this is not straightforward.
As seen in the previous section, there is not a simple linear
relationship between number of flits and runtime, so linear
regression is inappropriate. We only have counters for MILC’s
routers, but MILC’s traffic is also sent through outside routers
along non-deterministic paths. Collecting counters at the gran-
ularity of seconds loses information about the timing of the
traffic. Finally, MILC occupies approximately 100 routers in a
typical allocation, with 48 ports per router, so we have counter
values for thousands of links which must be aggregated
without losing critical information.

To help overcome these difficulties, we apply machine
learning techniques to our data. In particular, we construct a set
of simple statistical features from the flits and stalls counters
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Fig. 10: Time per timestep for one execution of MILC.

and build a regression model with runtime as the response
variable. Our feature set is comprised of the sum, average and
maximum of the counter values for flits and stalls, in each
of the 8 virtual channels across all nodes. We consider each
timestep in a run as a data sample and construct the feature
matrix X ∈ Rd×(Nt×Nr), where d denotes the number of
features, and Nr and Nt correspond to the number of runs and
number of timesteps in each run, respectively. Denoting yi as
the runtime for the sample i, our goal is to build a predictive
model, yi ≈ F(xi). Though a variety of regression techniques
exist in the machine learning literature, we choose Gradient
Boosted Machines (GBM) in our analysis. This technique is
appropriate for our data because it produces a non-linear model
with an approximation that is often superior to other strategies,
as explained below.

GBM is a machine learning paradigm where the key idea is
to assume that the unknown function F is a linear combination
of several base learners. The base learners will be greedily
trained by setting their target response to be the negative gra-
dient of the current loss with respect to the current prediction.
Mathematically, we assume the function of interest,

yi ≈ F(xi) =
m∑
j=1

βjψj(xi|zj), (1)

where ψj(x|zj) is the base learner parameterized by zj . The
GBM proceeds by performing a stage-wise greedy fit,

(βj , zj) = argmin
β,z

n∑
i=1

L(yi,Fj−1(xi) + βψi(xi|z)), (2)

where L is the loss function and fj−1 is the estimate of the
function obtained at the previous iteration,

Fj−1(xi) =

j−1∑
t=1

βtψt(xi|zt). (3)

The base learner coefficient βj is updated using steepest
gradient descent. In our implementation, we consider the
Huber loss function, and use simple decision trees as the base
learner. Because GBM sequentially adds models by directly



Fig. 11: Demonstration of the predictive power of the network counter data in describing the runtime behavior. Four executions
and the predictions obtained from the network counters are shown here. The predictions were obtained using a GBM regressor
with the sparse features.

optimizing for the negative gradient of the loss function, the
final approximation is often superior to other strategies.

Prior to regression fitting, it is common to exploit the
low-dimensional structure of the features by applying tools
such as Principal Component Analysis (PCA). In addition
to regularizing the regression problem, this pre-processing
step provides a robust set of features for analysis. While
PCA is ubiquitous, it is well-known that a few outlying data
can grossly corrupt its results. A number of approaches to
addressing this have been explored, and an important class
of methods adopt a matrix decomposition approach wherein
the feature matrix is decomposed as X = L + S. Here L
is a low-rank matrix denoting the low-dimensional structure
and S is a sparse matrix describing the outlying data. The
following convex optimization problem is solved to estimate
the low-rank and sparse components of X:

min
L,S
‖L‖∗ + λ‖S‖1 s.t. X = L+ S, (4)

where ‖.‖∗ denotes the nuclear norm (convex surrogate for
the rank of a matrix) and ‖.‖1 is the `1 norm.

B. Model Evaluation

We next evaluate our model to see if the network counters
have predictive power in terms of runtime for the 87 runs
we consider. First, we build regression models to predict the
execution time for different timesteps in each run. To evaluate
the performance, we perform 10-fold cross validation. The
total set of runs is split into 10 partitions and in each fold
nine of the partitions are used for training and the rest for
testing. Figure 11 shows the actual runtimes and the model-
predicted runtimes for several executions from the testing set.
We can see that the model does a good job of predicting most
timesteps in these executions. To quantify, we measure two
different error metrics: (a) mean squared error (MSE), and (b)
maximum absolute error (MAE) across all timesteps in each
of the test runs. Table II shows the errors obtained using the
base features (the matrix X directly) in comparison to the low-
rank and sparse components from Equation 4. Furthermore,
the regression performance obtained using a random forest
regressor is reported for comparison. It can be observed that
the GBM regressor outperforms a random forest regressor in

Feature
Gradient Boosted Machines Random Forest Regressor

MSE MAE MSE MAE

Base 0.56 (0.19) 5.2 (3.23) 0.75 (0.14) 6.13 (2.74)
Low-Rank 0.51 (0.22) 6.02 (2.61) 0.71 (0.09) 6.22 (2.51)

Sparse 0.35 (0.21) 5.04 (2.53) 0.53 (0.17) 5.96 (2.62)

TABLE II: Prediction performance - Mean Squared Error
(MSE) and Maximum Absolute Error (MAE) of the predicted
execution time obtained using GBM and random forest regres-
sors. In each case, the average and standard deviation of the
metrics obtained using a 10-fold cross validation are shown.

both metrics. More interestingly, the sparse feature performs
best because the outlying components in the counter values
were the most useful in predicting the large discrepancies in
the execution time.

All versions of the model perform well on most runs, having
a low mean squared error regardless of training/testing split
used. From this, we have high confidence in the models’
accuracy and conclude that the network counters have a
relationship to the runtime variation we see in executions.
Given our fine-grain trace findings, it is likely that the runtime
variation in our experiments is caused by network traffic from
other jobs, which is detected by the model via the counters.

However, despite having good average performance, the
best model still has a relatively high max error on a handful
of timesteps from our runs. Therefore, we explore whether
we can make our predictions more accurate with a final
modification.

C. Improving Prediction with Local Models

Designing an accurate predictive model that generalizes well
to variations in input features is challenging when the training
data set is both limited and characterized by a large variance
in the distribution of feature statistics. In such scenarios, it is
beneficial to partition the data into multiple subsets and infer
predictive models independently for each of the partitions.

While this approach leads to more accurate models, it is
not straightforward to perform the partitioning and determine
which of the models to apply to a new test sample. We address
these challenges by (a) developing a novel subspace clustering
algorithm to group similar runs, and (b) adopting the out-of-
sample extension method for spectral clustering to our case.



Fig. 12: Improved runtime prediction performance obtained by building multiple local regression models (2 in this case) to
effectively handle runs with completely different network counter statistics. Note that different y-axis scales are used for
readability.

Since each run corresponds to a matrix of feature values from
all timesteps, we build a low-dimensional PCA subspace for
the run and compare the subspaces for two different runs
to measure the distance between them. We consider the two
runs to be similar if (a) the two corresponding subspaces are
geometrically well-aligned, and (b) the data in the projected
subspaces are similarly distributed. More specifically, we use
the following steps to measure distance between two runs:

1) Fit PCA subspaces of dimension d (set to 5) to the two
runs and compute the principal angles {θi}di=1 between
them.

2) Project the input features onto the corresponding PCA
subspaces.

3) For each dimension i ≤ d: Fit two 1−D Gaussians
Si1 and Si2 to the ith dimension of the two subspaces,
and compute the symmetricized KL-divergence between
them as

λi = KL(Si1||Si2) +KL(Si2||Si1),

where

KL(Si1||Si2) =
∑
j

Si1(j) log
Si1(j)
Si2(j)

.

4) Compute the distance measure as:

dist(run1, run2) =
1

d

∑
i

θiλi.

The lower the distance, the more similar are the two runs. We
use this novel distance measure to perform spectral clustering,
which effectively partitions the runs into K groups. For each
group, we build a GBM regression model with the sparse
features (recall that these features performed the best in Table
II). We adopt the out-of-sample extension idea from Bengio et
al. [14] to determine the appropriate group for an unseen test
sample. Table III shows the MSE and MAE measures obtained
using K = 1, 2, 3 regression models. We see that using
even two local models results in a significant improvement
in performance over the global predictive model, cutting the
maximum prediction error nearly in half. We demonstrate the
resulting predictions for four runs in Figure 12, and we clearly
see the improvement in prediction performance obtained using
local models.

Number of Models 1 2 3

MSE 0.35 (0.21) 0.22 (0.09) 0.2 (0.11)

MAE 5.04 (2.53) 2.87 (2.01) 2.79 (1.86)

TABLE III: Prediction performance obtained by training mul-
tiple regression models for different subsets of runs obtained
by a novel clustering approach. Note that in all cases the sparse
features were used to train GBM regressors.

VIII. RELATED WORK

The most closely related paper to ours studies job contention
via simulation in dragonfly networks [5]. Their paper simulates
execution on dragonfly machines, shows that contention exists,
and then proposes a placement strategy to alleviate it. In
contrast, we analyze interference and correlate it to specific
network performance counters (flits and stalls) on a real
dragonfly installation (Edison). Other researchers have used
simulation to study dragonfly machines, including our own
prior work [15] (which also provided a visualization tool to
help understand dragonfly simulations).

Work in the same vein as ours includes the so-called “Neigh-
borhood paper” [6]. In this paper, the authors showed that on
a Cray torus machine, performance degradation occurred and
was most likely due to nearby jobs. In contrast, our paper
studies dragonfly networks and links slowdown to flits and
stalls. Also work on “quiet neighborhoods” [16] proposed
techniques to map jobs to virtual network blocks based on
job size to try to avoid contention; this paper deals with real,
current systems and their schedulers.

There are also simulators that deal with congested network
links in supercomputers. For example, Hoefler et al. [17] devel-
oped LogGOPSim, which is a simulator that uses the LogGPS
model in addition to contention. Other simulators that handle
contention are SimGrid [18], TraceR [19] and SST/macro [20].
Overall, simulators are useful tools to understand aspects of
contention, but real world systems tend to be more complicated
than a chosen machine/system model.

IX. SUMMARY AND DISCUSSION

In this paper, we studied the performance variability of
a real-world application on a modern supercomputer built
with a dragonfly network interconnect. We found that the



application with which we experimented, MILC, experiences
significant performance degradation when multiple jobs are
competing for the network. This degradation occurs even
though the dragonfly interconnect is supposed to help insulate
applications from one another.

We analyzed the performance variability of MILC in re-
lation to hardware network counters in two ways: (1) we
performed a fine-grain analysis of an MPI trace of MILC
to relate per-rank delays to heavily-subscribed links, and (2)
we developed a coarse-grain model using machine learning
to predict MILC’s execution time given statistics of the net-
work counters across the machine. Both analyses showed that
slowdown in MILC is related to increased network activity.
The model we have developed has a mean squared error of
only 0.22 and could be used to help determine interference
between various classes of applications and therefore help
job schedulers schedule jobs with explicit regard for potential
interference.

Despite its coarse granularity, our predictive model works
quite well in most cases. That said, there are some limitations
in the data available to us, and addressing these limitations
would allow us to make a more precise analysis in the future.
In particular, an ideal experimental environment would:

• allow us to collect network counters for all routers on
the machine, rather than only ones local to our job (the
LDMS [21] infrastructure exists for this purpose, but is
not available on many machines);

• give us a better idea of the paths taken by our messages,
so that we could analyze data for the exact links our
application used and understand which links are being
shared with other jobs;

• provide more precise network counters, such as counters
for stalls which can be associated with the outgoing
(stalling) port, rather than the incoming port on which
the stalling message was received;

• give us the ability to sample counters at a finer granular-
ity, to determine the precise timing of traffic;

• give us full control over the machine and the competing
jobs.

Though communication interference between applications is
an important yet poorly-understood problem, it is very difficult
to study it in a real-world setting with the currently available
tools. Tools that include some or all of the features above
would help us perform an even deeper analysis.
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