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1 INTRODUCTION

[TODO: Rick]

I NTRODUCTION and motivation of our work. Also, back-
ground material on temporal data and databases, XML,

XML Schema.

1.1 Motivation: Temporal
Limitations of XML Schema for temporal data; why augment-
ing XML Schema is needed

1.1.1 Motivation: Constraints
Value of constraints; why we need special consideration for
temporal augmentations of XML Schema constraints

from TR

need to introduce the company example properly

should include XSD code for company example
We use the company example to describe the
The root of this schema is the company entity. Under

that, there are products and suppliers. An order is
considered a sub-element of suppliers (with a reference
from order to product number for data integrity).

2 RELATED WORK

[TODO: Sabah]
(TR: Section 4, 15)
• Temporal XML and XML Schema related efforts
• Temporal DB: constraint management (new)
from TR: part 1 related work

There are various XML schemas that have been proposed
in the literature and in the commercial arena. We chose to
extend XML Schema in τXSchema because it is backed by the
W3C and supports most major features available in other XML
schemas [?]. It would be relatively straightforward to apply the
concepts in this paper to develop time support for other XML
schema languages; less straightforward but possible would be
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to apply our approach of temporal and physical annotations to
other data models, such as UML [?] (to produce temporally
augmented class diagrams, for example). Previously, we have
extended the Unifying Semantic Model, a conceptual model
that extends the ER Model, to utilize annotations [?], very
similar to what we propose here.

Methods to represent temporal data and documents on the
web have been actively researched. This research has covered
a wide range of issues that include architectures for collecting
document versions [?], strategies for storing versions [?],
studies on the frequency of data change [?], temporal query
languages [?], [?] and using events to trigger actions [?].
Techniques to capture the semantics of variants (alternatives of
an element that can co-exist at a point in time) are orthogonal
to our work, but have also been discussed [?], [?]. The logical
representation of deltas between the versions and the aspects
of physical storage policy for storing those versions have been
proposed so as to maximize the space utilization [?]. Grandi
and Mandreoli [?] sketch an infrastructure for adding valid-
time timestamps to a web document, and formatting timeslices
from the document using XSLT. They give an XML Schema
definition for the timstamps, as we do in τXSchemafor our
timestamps. Temporal and physical annotations are not dis-
cussed, nor are temporal constraints. Grandi has created a
bibliography of previous work in this area [?]. More recent
papers on version control include [?], [?], [?]. Iwaihara
et al [?] discuss a versioned temporal model in the context
of access control. The model represents changes between
versions with a “delta graph,” which logically induces a
“version graph” (essentially a timeslice-based representation).
The focus of the paper is an access control language for
versions, unlike τXSchema, there is no ability to specify
which elements are to be versioned, the time domain of the
versioning, or the (logical) representation of the versions.
Wond and Lam [?] present a version management system
for XML data. The system stores a document’s history as a
combination of some complete versions and deltas. The deltas
are edit scripts, and can be used to construct a version from
a nearby complete version. They also present part of a query
language to retrieve desired versions. The focus of the paper is
on efficient storage and retrieval of versions, whereas our focus
is on fine-grained control of versioning. Wang and Zaniolo [?]
present a comprehensive system for concisely representing a
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temporally-grouped XML version history. They also give a
query language to retrieve past versions. Their extensions,
like ours, require no changes to current standards to support
versioning. Unlike τXSchema, everything is versioned and
there is no support for temporal constraints in the versioning.
Temporal and physical schema annotations are not discussed.

In context of time-varying documents, Garcia-Molina and
Cho [?] provide evidence that some web resources change
frequently (though not specifically XML resources). Nguyen
et al. [?] describe how to detect changes in XML documents
that are accessible via the web. In the Xyleme system [?], the
XML Alerter module periodically (with a periodicity specified
by the user) accesses the XML document and compares it with
a cached version of the document. The result is a sequence
of static documents, each with an associated existence period.
Dyreson [?] describes how a web server can capture some
of the versions of a time-varying document, by caching the
document as it is served to a client, and comparing the cached
version against subsequent requests to see if anything has
changed. Amagasa et al. [?] classify the methods used to
access XML documents into two general categories: (i) using
specialized APIs for XML documents, such as DOM, and (ii)
directly editing documents, e.g., with an editor. In the former
case, to access and modify temporal XML documents, DOM
can be extended to automatically capture temporal informa-
tion (and indeed, we have implemented such functionality
in τ DOM). Franceschet et al. [?] have also adopted this
approach, but their approach requires the user to specify
a valid ER schema and it only supports limited temporal
data validation. It is also possible to capture transaction time
information in the documents through change analysis, as
discussed above and elsewhere [?], [?], [?]. Inconsistencies
arise when the documents can be edited directly and methods
need to designed to resolve them [?], [?]. Most previous
approaches, irrespective of their methods to access XML
documents, assume that timestamps are present on every time-
varying element [?], [?], [?] (whereas our approach enables
the schema designer to specify the physical location of the
timestamps).

There has been a lot of interest in the representation schemes
for time-varying documents. Some version control tools have
been developed for data varying XML documents (e.g., [?],
[?]). Chien, Tsotras and Zaniolo [?] have researched tech-
niques for compactly storing multiple versions of an evolving
XML document. Chawathe et al. [?] described a model for
representing changes in semi-structured data and a language
for querying over these changes. A related option, the diff
based approach [?], [?] focuses on an efficient way to store
time-varying data and can be used to help detect transaction
time changes in the document at the physical level. Buneman
et al. [?], [?] provide another means to store a single copy of
an element that occurs in many snapshots. Grandi and Man-
dreoli [?] propose a <valid> tag to define a validity context
that is used to timestamp part of a document. Mandreoli et
al. [?] utilize native support, in which an XML document is
encoded using inverted lists of tuples with additional position
and level numbers. Assuming a data document were stored in
this representation, their slicing implementation could be used

to implement unsquash efficiently. Finally, Chawathe et al. [?],
Dyreson et al. [?], Mendelzon et al. [?] and Tang et al. [?]
discuss timestamps on edges (instead of document nodes) in
a semi-structured data model.

Recently there has been interest in incremental validation of
XML documents [?], [?], [?], [?]. These consider validating a
snapshot that is the result of updates on the previous snapshot,
which has already been validated. In a sense, this is the dual to
the problem we consider, which is validating a (compressed)
temporal document all at once, rather than once per snapshot
(incrementally or otherwise).

None of the approaches above focus on the extensions
required in XML Schema to adequately specify the nature
of changes permissible in an XML document over time, and
the corresponding validation of the extended schema. In fact,
some of the previous approaches that attempt to identify or
characterize changes in documents do not consider a schema.
As our emphasis is on logical and physical data modeling, we
assume that a schema is available from the start, and that the
desire is for that schema to capture both the static and time-
varying aspects of the document. If no schema exists, tools can
derive the schema from the base documents [?], but the details
of that is beyond the scope of this paper. Our research applies
at the logical view of the data, while also being able to specify
the physical representation. Since our approach is independent
of the physical representation of the data, it is possible to
incorporate the diff-based approach and other representational
approaches [?] in our physical annotations.

from TR: part 2 related work
In this section, we review prior related work in the area of

schema versioning. Version and source control for schemas
and schema objects is needed, especially in complex, multi-
enterprise development environments. The XML Schema
working group at W3C has discussed desirable behaviors
for use cases that involve schema versioning in XML [?].
Various techniques to support evolution of XML schemas,
where they allow for extensibility in the original design have
also been proposed [?]. The emphasis of the paper is to avoid
changes to the existing applications by anticipating changes
to the schemas and then designing them for evolution. This is
typically achieved through a careful use of wildcards, allowing
extensions through namespaces, allowing applications to ig-
nore unknown objects, and forcing applications to understand
unknown objects when no other option is available. This
approach does not address the whole problem, as many schema
changes cannot be expressed in their limited notations.

Schema versioning has been previously researched in the
context of temporal databases [?]. But an XML schema
is a grammar specification, unlike a (relational) database
schema, so new techniques are required. Although various
XML schema languages have been proposed in the literature
and in the commercial arena, none model schema changes nor
provide versioning. We chose to base our research on XML
Schema because it is backed by the W3C and is the most
widely-used schema language.

Brahmia et al. propose a six-component taxonomy of
schema change operations for use in supporting schema
versioning across both valid and transaction time with
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XMLSchema [?].
Raghavachari and Shmueli consider a problem different

from that considered in the present paper: can a nontemporal
XML document D that is known to be valid according to
nontemporal XML schema S be efficiently validated against a
different schema S′ [?]. However, their problem and proposed
solutions are relevant to the validation for a temporal document
against a temporal schema as considered in the present paper.
As the schema evolves over time, the data is required to also
evolve so that he data timestamped with a transaction time at
the new time is consistent with the schema timestamped with
that transaction time. It is possible for the tool constructing
that temporal document, or for the SQUASH tool as it considers
a schema change, to efficiently revalidate the data document
currently in force against the new schema.

3 LANGUAGE DESIGN
[TODO: Curtis]

(TR: some material from Sections 5 and 9)
• Background of previous work (sufficient tauXSchema for

them to understand subsequent discussions)
• Desiderata for temporal XML Schema and constraints

including: allowing sequenced and non-sequenced con-
straints; valid-time, transaction-time, bitemporal support;
also support for data and schema versioning

• Data independence, why a logical annotation document is
needed and why temporal constraint annotations belong
in annotations

from TR: Part1Design.tex
This section provides the overarching design decisions re-

lated to time-varying data within the τXSchema system, and
the desiderata and design goals that motivated those decisions.

We start out with some terminology that will be used
throughout this document, including conventional and tempo-
ral (XML) documents, and conventional and temporal (XML)
schemas (which are also XML documents themselves). Also
defined is the annotation document and slice (which are also
XML documents themselves). We then present some high level
design desiderata and goals that motivate the specific decisions
listed in Section 3.2. This includes decisions relevant to the
temporal schema, annotations, and the temporal document. We
conclude by presenting a brief example to illustrates the usage
of the τXSchema language.

from TR Part1Design Documents.tex
This section defines terms relevant to τXSchema.

3.1 Terminology
This section defines terms relevant to τXSchema.
• Conventional Document: A standard XML document that

has no temporal aspects.
• Temporal Document: A standard XML document that

represents a sequence of conventional documents (i.e.,
slices). It may be user-created or the result of the SQUASH
tool and has the root element <temporalRoot>.

• Conventional Schema: A standard XML Schema doc-
ument that describes the structure of the conventional
document(s). The root element is <schema>.

• Temporal Schema: A standard XML document that ties
together the conventional schemas and the annotations.
In our temporal system, the temporal schema is the log-
ical equivalent to the XML Schema of the conventional
world; it describes the rules and format of the temporal
documents. The root element is <temporalSchema>.

• Annotation Document: A standard XML document that
specifies a variety of characteristics (e.g., logical, physi-
cal, etc.) of a conventional document. For example, logi-
cal characteristics specify whether an element or attribute
varies over valid time or transaction time, whether its
lifetime is described as a continuous state or a single
event, whether the element itself may appear at certain
times (and not at others), and whether its content changes;
physical characteristics specify the timestamp options for
the representation, such as where the timestamps are
placed and their kind (e.g., valid time or transaction time)
and the kind of representation.

• Slice: A version of a temporal document at a given
point in time. For example, if a temporal document is
comprised of two conventional documents d1 and d2,
which occur at time t1 and t2, respectively, then the slice
at time t2 is d2.

from TR: Part1Design Documents.tex

3.2 Design Decisions
This section outlines the design decisions that resulted from
the design goals. We first describe general decisions that apply
to all of τXSchema, and then discuss the decisions that apply
specifically to temporal schemas, temporal documents, and
annotations documents.

3.3 Company Example
This section walks through in detail an example that illustrates
the usage of τXSchema. Explanations of a user’s actions are
given in sequence and the corresponding XML text is provided
via a listing. In effort to make the example as clear as possible,
a few conventions are followed. Note that each convention is
used only for clarity and is not a requirement in τXSchema.
• Only transaction time is considered.
• The example does not use default namespaces for
τXSchema files (e.g., temporal schemas) in order to
emphasize which namespace is being used. However,
conventional documents make use of default namespaces
for brevity.

• As file contents are changed over time, a version number
embedded in the name will also change so that the reader
can more easily keep track of the changes. The version
number for each file begins at 0 and is constructed as
follows.

– Company.S.xsd for conventional schemas, where
S = {A, B, C, ...} indicates the version of the
schema, e.g., Company.A.xsd.

– data.S.D.xml for conventional documents,
where S indicates the version of the schema being
used and D indicates the version number of the
conventional document, e.g., data.A.0.xml.
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– temporalDocument.S.D.xml for temporal
documents, where S indicates the version of the
temporal schema being used and D indicates the
version number of the latest conventional document,
e.g., temporalDocument.0.3.xml.

– temporalSchema.D.xml for temporal schemas,
where D indicates the version number of the tempo-
ral schema, e.g., temporalSchema.0.xml.

– annotations.A.xml for annotation documents,
where A indicates the version of the temporal anno-
tation document, e.g., annotations.0.xml.

– Person.S.E.xsd for the Person subschemas,
where S indicates the first version of the conven-
tional schema that references this subschema and E
indicates the version number of the subschema itself,
e.g., Person.A.0.xml.

– Product.S.F.xsd for the Product subschemas,
where S indicates the first version of the conven-
tional schema that references this subschema and F
indicates the version number of the subschema itself,
e.g., Product.A.0.xml.

In this example, each time the user modifies the conven-
tional schema, a new file is created. He must then modify
the conventional document to reference this new, modified
schema. In practice, this is awkward and would rarely happen.
In a more realistic situation, the user would reuse the same
filename by just modifying the file in place, and editors would
be responsible for automatically retaining previous versions.
Also, in practice the conventional document would change
much more frequently than the conventional schema. Figure 1
depicts the overall scenario.

3.3.1 Initial Configuration

Consider the following scenario which begins on 2008-01-
01. The user has a conventional schema which defines a
<Person> element, which itself has a <Name> element, an
<SSN> element, and an ID attribute.

<?xml version="1.0"?>
<xsd:schema
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.company.org"
xmlns="http://www.company.org"
elementFormDefault="qualified">

<xsd:element name="Company">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="Person"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="Person">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="Name" type="xsd:string"/>
<xsd:element name="SSN" type="xsd:string"/>

</xsd:sequence>
<xsd:attribute name="ID" type="xsd:string"/>

</xsd:complexType>
</xsd:element>

</xsd:schema>

Listing 1. Company.A.xsd

He also has a conventional document conforming to the
schema.
<?xml version="1.0" encoding="UTF-8"?>
<Company xmlns="http://www.company.org">

<Person ID="1">
<Name>Steve</Name>
<SSN>111-22-3333</SSN>

</Person>

</Company>

Listing 2. data.A.0.xml

Together, these documents form a conventional system
which can be validated with conventional validation tools (e.g.,
XMLLINT). Of course, τXMLLINT will also validate this
conventional system. In the following sections, we will add
new versions of the conventional document, add new versions
of the conventional schema, break up the conventional schema
into multiple subschemas, and specify temporal annotations.
Figure 1 shows the relationship between all the documents in
the system. Note that Company schema (for details on this
schema and example documents, please see Section ??) will
import and include two subschemas: Person and Product.
In this example, both the Person and Product schemas will
change over time. Each time there is a new slice created,
the Company schema must be updated to reference the new
slice. There are other mechanisms available to the user for
handling this scenario, as described in the document beginning
at section ??

3.3.2 Adding Temporal Data
On 2008-03-17, the user corrects the <SSN> element in the
conventional document to produce a new version. The user can
now use τXSchema to create temporal documents and use the
τXSchema tools to validate these documents.
<?xml version="1.0" encoding="UTF-8"?>
<Company xmlns="http://www.company.org">

<Person ID="1">
<Name>Steve</Name>
<SSN>123-45-6789</SSN>

</Person>

</Company>

Listing 3. data.A.1.xml

The user creates a temporal document that lists both slices of
the conventional document with their associated timestamps.
<?xml version="1.0" encoding="UTF-8"?>
<td:temporalRoot xmlns:td="http://www.cs.arizona.edu/tau/tauXSchema/TD">

<td:temporalSchemaSet>
<td:temporalSchema location="./Company.A.xsd"/>

</td:temporalSchemaSet>

<td:sliceSequence>
<td:slice location="data.A.0.xml" begin="2008-01-01" />
<td:slice location="data.A.1.xml" begin="2008-03-17" />

</td:sliceSequence>

</td:temporalRoot>

Listing 4. temporalDocument.0.1.xml

The user uses the conventional schema as the temporal
schema. That is, the user does not explicitly create a temporal
schema. Note that since no logical or physical annotations
have been specified, the defaults will take effect.
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Fig. 1. An overview of the end-state of the Company example.

from Part1Architecture.tex
In this section we describe the overall architecture of

τXSchema and illustrate with an example. The design and
implementation details of the tools are explained further in
Section ??.

A visual depiction of the architecture of τXSchema is
illustrated in Figure 2. This figure is central to our approach,
so we describe it in detail and illustrate it with examples.
We note that although the architecture has many components,
only those components shaded in the figure are specific to
an individual time-varying document and need to be supplied
by a user. New time-varying schemas can be quickly and
easily developed and deployed. We also note that the rep-
resentational schema, instead of being the only schema in an
ad hoc approach, is merely an artifact in our approach, with
the conventional schema, logical annotations, and physical
annotations being the crucial specifications to be created by
the designer.

The designer annotates the conventional schema with log-
ical annotations (box 5). The logical annotations together
with the conventional schema form the logical schema. List-
ing 5 provides an extract of the logical annotations on the
winOlympic schema. The logical annotations specify a variety
of characteristics such as whether an element or attribute
varies over valid time or transaction time, whether its life-
time is described as a continuous state or a single event,
whether the item itself may appear at certain times (and not
at others), and whether its content changes. For example,
<athlete> is described as a state element, indicating that
the <athlete> will be valid over a period (continuous)

of time rather than a single instant. Annotations can be
nested, enabling the target to be relative to that of its parent,
and inheriting as defaults the kind, contentVarying, and
existenceVarying attribute values specified in the parent.
The attribute existenceVarying indicates whether the
element can be absent at some times and present at others.
As an example, the presence of existenceVarying for
an athlete’s phone indicates that an athlete may have a phone
at some points in time and not at other points in time. The
attribute contentVarying indicates whether the element’s
content can change over time. An element’s content is a string
representation of its immediate content, i.e., text, sub-element
names, and sub-element order.

As discussed in Section ??, if no annotations are provided
whatsoever, the default annotation is that anything can change.
However, once we begin to annotate the conventional schema,
the semantics we adopt are that elements that are not described
as time-varying are static. Thus, they must have the same
content and existence across every XML document in box 7.
For example, we have assumed that the birthplace of an athlete
will not change with time, so there is no annotation for
<birthPlace> among the logical annotations. The schema
for the logical annotations document is given by ASchema
(box 2).

<?xml version="1.0" encoding="UTF-8"?>
<logical

xmlns="http://www.cs.arizona.edu/tau/tauXSchema/ASchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.cs.arizona.edu/tau/

tauXSchema/ASchemaASchema.xsd">
<default>

<format plugin="XMLSchema" granularity="gDay"/>
</default>
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9. Temporal Data
10. Representational

Schema

0. XML Schema

8. Non−Temporal Data

7. Physical Annotation

Input/Output References Namespace

SQUASH

Legend of Arrows

1. TSSchema

4. Base Schema

5. Temporal Schema

6. Logical Annotation

SCHEMA
MAPPER

2. ASchema

Fig. 2. Overall Architecture of τXSchema

...
<item base="winOlympic/country/athleteTeam">
<validTime content="constant" existence="varyingWithGaps">

<maximalExistence begin="1924-01-01" />
</validTime>
<itemIdentifier name="teamName"

timeDimension="transactionTime">
<field path="./teamName"/>

</itemIdentifier>
</item>

...
<item target="winOlympic/country/athleteTeam/athlete/medal">
<validTime/>
<transactionTime/>
<itemIdentifier name="medalId1"

timeDimension="bitemporal">
<field path="./text()"/>
<field path="../athName"/>

</itemIdentifier>
</item>

...
</logical>

Listing 5. Sample WinOlympic Temporal Annotation

The next design step is to create the physical annotations
(box 6). In general, the physical annotations specify the time-
stamp representation options chosen by the user. An excerpt
of the physical annotations for the winOlympic schema is
given in Listing 6. Physical annotations may also be nested,

inheriting the specified attributes from their parent; these
values can be overridden in the child element.

<?xml version="1.0" encoding="UTF-8"?>
<physical xmlns="http://www.cs.arizona.edu/tau/tauXSchema/

ASchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.cs.arizona.edu/tau/
tauXSchema/ASchema

ASchema.xsd">
<default>
<format plugin="XMLSchema" granularity="days"/>

</default>
...

<stamp target="winOlympic/country">
<stampKind timeDimension="transactionTime"

stampBounds="extent"/>
</stamp>

...
<stamp target="winOlympic/country/athleteTeam/athlete">
<stampKind timeDimension="transactionTime"

stampBounds="step"/>
</stamp>

...
</physical>

Listing 6. Sample WinOlympic Physical Annotation

Physical annotations play two important roles.
• They help to define where the physical timestamps will be

placed (versioning level). The location of the timestamps
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is independent of which components vary over time (as
specified by the logical annotations). Two documents with
the same logical information will look very different if
we change the location of the physical timestamp. For
example, although the elements phone and athName
are time-varying, the user may choose to place the
physical timestamp at the athlete level. Whenever
any element below athlete changes, the entire athlete
element is repeated.

• The physical annotations also define the type of time-
stamp (for both valid time and transaction time). A time-
stamp can be one of two types: step or extent. An
extent timestamp specifies both the start and end instants
in the timestamp’s period. In contrast a step-wise constant
(step) timestamp represents only the start instant. The end
instant is implicitly assumed to be just prior to the start of
the next version, or now for the current version. However,
one cannot use step timestamps when there might be
“gaps” in time between successive versions. extent
timestamps do not have this limitation. Changing even
one timestamp from step to extent can make a big
difference in the representation.

The schema for the physical annotations is also contained
within ASchema (box 2). τXSchema supplies a default set of
physical annotations, which is to timestamp the root element
with valid and transaction time using step timestamps, so the
physical annotations are optional. However, adding them can
lead to more compact representations.

We emphasize that our focus is on capturing relevant aspects
of physical representations, not on the specific representations
themselves (the design of which is challenging in itself). Also,
since the logical and physical annotations are orthogonal and
serve two separate goals, we choose to maintain them indepen-
dently. A user can change where the timestamps are located,
independently of specifying the temporal characteristics of that
particular element. In the future, when software environments
for managing changes to XML files over time are available,
the user could specify logical and physical annotations for
an element together (by annotating a particular element to
be temporal and also specifying that a timestamp should be
located at that element), but these would remain two distinct
aspects from a conceptual standpoint.

The temporal schema (box 4) ties the schema, logical
annotations and physical annotations together. This document
contains sub-elements that associate a series of conventional
schema with logical and physical annotations, along with
the time span during which the association was in effect.
The schema for the temporal schema document is TSSchema
(box 1).

At this point, the designer is finished. She has written
one conventional XML schema (box 3), specified two sets
of annotations (boxes 5 and 6), and provided the linking
information via the temporal schema document (box 4). We
provide boxes 1 and 2; XML Schema (box 0) is of course
provided by W3C. Thus new time-varying schemas can be
quickly and easily developed and deployed.

Let’s now turn our attention to the tools that operate on these
various specifications. The temporal schema document (box 4)

6. Logical Annotations

7. Physical Annotations

4. Conventional Schema

5. Temporal Schema XMLLintT Error Messages

Fig. 3. τValidator: Checking the schemas

5. Temporal Schema

9. Temporal Document

XMLLintT Error Messages

Fig. 4. τValidator: Checking the instance

is passed through the τValidator (see Figure 3) which checks
to ensure that the temporal and physical annotations are con-
sistent with the conventional schema. The τValidator utilizes
the conventional validator (e.g., XMLLINT) for many of its
checks. For instance, it validates the logical annotations against
the ASchema. But it also checks that the logical annotations
are not inconsistent. Similarly, the physical annotations docu-
ment is passed through the τValidator to ensure consistency of
the physical annotations. The temporal constraint checker then
evaluates the temporal constraints expressed in the schema (see
Section ?? for more details). Finally, the temporal validator
reports whether the temporal document was valid or invalid.

Once the annotations are found to be consistent, the Schema
Mapper (software oval, Figure 2) generates the representa-
tional schema (box 9) from the original conventional schema
and the logical and physical annotations. The representational
schema is needed to serve as the schema for a time-varying
document/data (box 8). The time-varying data can be created
in four ways:

1) automatically from the non-temporal data (box 7) using
τXSchema’s squash tool (described in Section ??),

2) automatically from the data stored in a database, i.e., as
the result of a “temporal” query or view,

3) automatically from a third-party tool, or
4) manually.
The time-varying data is validated against the represen-

tational schema in two stages. First, a conventional XML
Schema validating parser is used to parse and validate the
time-varying data since the representational schema is an
XML Schema document that satisfies the snapshot validation
subsumption property. But as emphasized in Section ??, using
a conventional XML Schema validating parser is not sufficient
due to the limitations of XML Schema in checking temporal
constraints. For example, a regular XML Schema validating
parser has no way of checking something as basic as “the
valid time boundaries of a parent element must encompass
those of its child”. These types of checks are implemented
in the τValidator. So the second step is to pass the temporal
data to τValidator as shown in Figure 4. A temporal XML
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data file (box 8) is essentially a timestamped representation
of a sequence of non-temporal XML data files (box 7). The
namespace is set to its associated XML Schema document
(i.e., representational schema). The timestamps are based on
the characteristics defined in the logical and physical anno-
tations (boxes 5 and 6). The τValidator, by checking the
temporal data, effectively checks the non-temporal constraints
specified by the conventional schema simultaneously on all
the instances of the non-temporal data (box 7), as well as the
constraints between snapshots, which cannot be expressed in
a conventional schema.

To reiterate, the conventional approach to storing times-
tamped data would require the user start with a represen-
tational schema (box 9) and use it to validate the temporal
data (box 8). Both these documents become very complex if
time varying data and schema are to be handled, and are non-
intuitive to work with directly. Our proposed approach is to
have the user design a conventional schema, add logical and
physical annotations (boxes 5 and 6), leading to the repre-
sentational schema (and temporal data) being automatically
generated. In the second part of this technical report (Section
?? onwards), we discuss the user specification of the temporal
schema (box 4), which is only needed if the conventional
schema (box 3) and annotation documents (boxes 5 and 6)
themselves can vary.

4 THEORETICAL FRAMEWORK

[TODO: Curtis]
(TR: Section 6)
• Sufficient details to allow the reader to have a background

for constraints and understand the eval function
from TR

This section sketches the process of constructing a schema
for a time-varying document from a conventional schema. The
goal of the construction process is to create a schema that
satisfies the snapshot validation subsumption property, which
is described in detail below. In the relational data model, a
schema defines the structure of each relation in a database.
Each relation has a very simple structure: a relation is a list
of attributes, with each attribute having a specified data type.
The schema also includes integrity constraints, such as the
specification of primary and foreign keys. In a similar manner,
an XML Schema document defines the valid structure for
an XML document. But an XML document has a far more
complex structure than a relation. A document is a nested
collection of elements, with each element potentially having
(text) content and attributes.

4.1 Snapshot Validation Subsumption

Let DT be an XML document that contains timestamped
elements. A timestamped element is an element that has an
associated timestamp. (A timestamped attribute can be mod-
eled as a special case of a timestamped element.) Logically,
the timestamp is a collection of times (usually periods) chosen
from one or more temporal dimensions (e.g., valid time,
transaction time). Without loss of generality, we will restrict
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Fig. 5. Snapshot Validation Subsumption

the discussion in this section to lifetimes that consist of a single
period in one temporal dimension. The timestamp records
(part of) the lifetime of an element. We will use the notation
xT to signify that element x has been timestamped. Let the
lifetime of xT be denoted as lifetime(xT ). One constraint on
the lifetime is that the lifetime of an element must be contained
in the lifetime of each element that encloses it.

The snapshot operation extracts a complete snapshot of a
time-varying document at a particular instant. Timestamps are
not represented in the snapshot. A snapshot at time t replaces
each timestamped element xT with its non-timestamped copy
x if t is in lifetime(xT ) or with the empty string, otherwise.
The snapshot operation is denoted as

snp(t,DT ) = D

where D is the snapshot at time t of the time-varying docu-
ment, DT .

Let ST be a representational schema for a time-varying
document DT . The snapshot validation subsumption property
captures the idea that, at the very least, the representational
schema must ensure that every snapshot of the document is
valid with respect to the conventional schema. Let vldt(S,D)
represents the validation status of document D with respect to
schema S. The status is true if the document is valid but false
otherwise. Validation also applies to time-varying documents,
e.g., vldtT (ST , DT ) is the validation status of DT with respect
to a representational schema, ST , using a temporal validator.

Property [Snapshot Validation Subsumption] Let S be
an XML Schema document, DT be a time-varying XML
document, and ST be a representational schema, also an XML
Schema document. ST is said to have snapshot validation
subsumption with respect to S if

vldtT (ST , DT )⇔ ∀t[∃lifetime(DT )⇒ vldt(S, snp(t,DT )]

Intuitively, the property asserts that a good representational
schema will validate only those time-varying documents for
which every snapshot conforms to the conventional schema.
The subsumption property is depicted in Figure 5.

4.2 Content and Existence Variance
The data stored in XML documents may change over time.
It is useful to be able to validate the way data can change.
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The XML Schema standard provides a way to validate XML
documents, but does not define how an XML document is
allowed to change with time. To meet this need, τXSchema
was created as an extension of the XML standard that validates
time-varying XML documents.

The two ways that a node in an XML document can vary
with time are (1) in its content or (2) in its existence. The
content of an item includes the entire sub-tree rooted at a node.
Each branch in the sub-tree terminates at the first item on the
branch, or at a leaf (text value, attribute, empty element). Some
nodes, especially those containing loose text, will change their
content. Some nodes will exist in one version of an XML
instance document but will not be present in another version.
Other nodes will have both their content and existence change
over time.

An item definition specifies how a data node may vary in
its content and its existence. Let’s first consider how an item
specifies existence. There are three possible alternatives. The
first is “varying with gaps”, which means that each of its
corresponding data nodes may be present in some versions of
the XML instance document and absent in others. A second,
more restrictive form is “varying without gaps.” The data
node is not required to always be present. When it is present
there may not be any gaps in its existence. The third value is
“constant”. Then the corresponding data node is either always
present or never present. Again the existence-constant can have
many different semantics. We have identified three of them and
provide support for the first two in our implementation.
• Existence is constant over all time (exists in every instant

in lifetime of universe).
• Existence is constant over document lifetime (document

lifetime may have gaps).
• Existence is constant over the lifetime of the immediate

ancestor’s item.
The other aspect an item may specify is content. The content

of a data node depends on its node type. The content may
change in the data node at any time if the corresponding
item specifies content as varying. There are restrictions on
how a data node’s content may change over time when
the corresponding item specifies content as constant. The
restrictions are different for each of the type of content (e.g.,
elements, attributes and loose text). The detailed explanation
of the restrictions can be found in Section ??.

Content-varying and existence-varying are orthogonal con-
cepts. The only restriction is that, when an item is
content-constant, the item’s immediate descendants should
be existence-content, but switching of parents is allowed.
When an item specifies content or existence as varying, the
corresponding data node may vary with time, but is not
required to.

4.3 Items
In order to create a temporal document it is important to
identify which elements persist across various transformations
of the document. This section discusses how to find and
associate elements in different snapshots of a temporal XML
document. When elements are temporally-associated, an item

is created. An item is a collection of XML elements that
represent the same real-world entity. An item is a logical entity
that evolves over time through various versions.

In a temporal database, a pair of value-equivalent tuples can
be coalesced, or replaced by a single tuple that has a lifespan
equivalent to the union of the pair’s lifespans. Coalescing is
an important process in reducing the size of a data collection
(since the two tuples can be replaced by a single tuple) and in
computing the maximal temporal extent of value-equivalent
tuples. In a similar manner, elements in two snapshots of
a temporal XML document can be temporally-associated. A
temporal association between the elements is possible when
the element has the same item identifier in both snapshots.
We will sometimes refer to the process of associating a pair of
elements as gluing the elements. When two or more elements
is glued, an item is created.

Only temporal elements (that is, elements of types that have
a temporal annotation) are candidates for gluing. Determining
which pairs should be glued depends on two factors: the type
of the element, and the item identifier for the element’s type.
The type of an element is the element’s definition in the
schema. Only elements of the same type can be glued. An
item identifier serves to semantically identify elements of a
particular type. The identifier is a list of XPath expressions
(much like a key in XML Schema) so we first define what it
means to evaluate an XPath expression.

Definition [XPath evaluation] Let Eval(n,E) denote the
result of evaluating an XPath expression E from a context
node n. Given a list of XPath expressions, L = (E1, . . . , Ek),
then Eval(n,L) = (Eval(n,E1), . . . ,Eval(n,Ek)).

Since an XPath expression evaluates to a list of nodes,
Eval(n,L) evaluates to a list of lists.

Definition [Item identifier] An item identifier for a type, T ,
is a list of XPath expressions, L, such that the evaluation of L
partitions the set of type T elements in a (temporal) document.
Each partition is an item.

An item identifier has a target and at least one field, an
itemref or a keyref. A target is an XPath expression that
specifies an element’s location in the snapshots (relative to
the item under which it is defined). A field, itemref and a
keyref can each specify part of an item identifier. A field
contains an XPath expression that specifies an element or
attribute that is part of the item identifier. A keyref references
a snapshot key and an itemref references an item identifier.
This way an item may be specified in terms of an existing
item or schema key. An itemref and keyref use the name of
an item/key and are not XPath expressions. The item identifier
may consist of any combination of field(s), itemref(s) and
keyref(s). Each field expression specifies either an attribute or
an element. If an attribute is indicated, then the item identifier
uses the attribute’s value. If an element is indicated, then
the item identifier uses the element’s loose text. The current
implementation supports only fields.

A schema designer specifies the item identifiers for the
temporal elements. As an example, a designer might spec-
ify the following item identifiers for the temporal elements
<athlete> and <medal>.
• <athlete> ⇒ [athName/*]
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athName

athlete

medal medal

athlete athlete

doc doc doc

athName athName texttext

Kjetil Kjetil Kjetil

silver   gold

2002−01−01 2002−03−01 2002−07−01

athlete

Fig. 6. Items and Versions

• <medal> ⇒ [../athName/*, ./* ]

The item identifier for an <athlete> is the name of
the athlete, while the item identifier for <medal> is the
athlete’s name (the parent’s item identifier) combined with the
description of the event (the text within the medal element).
An item identifier is similar to a (temporal) key in that it is
used for identification. Unlike a key however, an item identifier
is not a constraint; rather it is a helpful tool in the complex
process of computing versions.

Over time, many elements in a temporal document may
belong to the same item as the item evolves. The association
of these elements in an item is defined below.

Definition [Temporal association] Let x be an element of
type T in the ith snapshot of a temporal document. Let y
be an element of type T in the jth snapshot of the document.
Finally let L be the item identifier for elements of type T . Then
x is temporally-associated to y if and only if Eval(x, L) =
Eval(y, L) and it is not the case that there exists an element
z of type T in a snapshot between the ith and jth snapshots
such that Eval(z, L) = Eval(x, L).

A temporal association relates elements that are adjacent
in time and that belong to the same item. For instance, the
<athlete> element in Listing ?? on page ?? is tempo-
rally associated with the <athlete> element in Listing ??
but not the <athlete> element in Listing ?? (though the
<athlete> element in Listing ?? is temporally related to
the one in Listing ??).

4.4 Versions

When an element in a new snapshot is temporally-associated
with an item, the association either creates a new version of
the item or extends the lifetime of the latest version within the
item. A version is extended when “no difference” is detected
in the associated element. Differences are observed within the
context of the Document Object Model (DOM).

Definition [DOM equivalence] A pair of elements is DOM
equivalent if the pair meets the following conditions.

• Their parents are the same item or their parents are non-
temporal elements.

• They have the same number of children.

• For each child that is a temporal element, the child is the
same item as the corresponding child of the other (in a
lexical ordering of the children).

• For each child that is something other than a temporal
element the child’s children are each DOM-equivalent
to the corresponding children of the other child (in a
lexical ordering of the children and grandchildren), and
the child’s value, type (e.g., element or text), and name
(e.g., tag name) are also the same.

• They have the same set of attributes (an attribute is a
name, value pair).

The third bullet in the above definition applies to non-
temporal children of a node. The idea is that the “value”
of a non-temporal child is the entire subtree rooted at the
child. The subtree terminates at either (non-temporal) leaves
or (temporal) items.

As an aside, we observe that DOM equivalence in a tem-
poral XML context is akin to value equivalence in a temporal
relational database context [?]. DOM equivalence is used to
determine versions of an item, as follows.

Definition [Version] Let x be an item of type T in a
temporal document, with a lifetime that ends at time t. Let
y be an element of type T in a snapshot at time t + k that
is temporally associated to the latest version of x, vt. If vt

is DOM equivalent to y then the lifetime of vt is extended
to include t + k. Otherwise, version vt+1, consisting of y, is
added to item x.

A version’s lifetime is extended when the element from the
next snapshot (or a future snapshot) is DOM equivalent (the
lifetime can have gaps or holes, although having a gap may
violate a schema constraint as described in section 4.2). A new
version is created when a temporal association is not DOM
equivalent.

Figure 6 depicts the items and versions in the example. An
abstract representation of the DOM for each snapshot of the
document is shown. The items in the sequence of snapshots are
connected within each shaded region. There is one athlete item
and one medal item. The athlete item has two versions; the
transition between versions is shown as a black stripe between
the regions.

5 XML SCHEMA CONSTRAINTS

[TODO: Sabah]
(TR: Section 7.1)
Overview of XML Schema constraints (conventional)
From TR

In this section we discuss XML Schema constraints and
their temporal extensions. XML Schema provides four types
of constraints.
• Identity constraints
• Referential Integrity constraints
• Cardinality constraints (in the form of minOccurs

and maxOccurs for sub-elements and required and
optional for attributes)

• Datatype restrictions (which constrain the content of the
corresponding element or attribute)
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XML Schema constraints are conventional constraints since
they restrict a specific conventional document. We briefly
explain each of these XML Schema constraints in turn, and
then proceed to their temporal extensions using the company
example.

The root of this schema is the company entity. Under
that, there are products and suppliers. An order is
considered a sub-element of suppliers (with a reference
from order to product number for data integrity).

5.1 XML Schema Constraints
5.1.1 Identity Constraints
Identity constraints restrict uniqueness of elements and at-
tributes in a given document. As with the relational model,
XML Schema allows users to define both key and unique
constraints. The distinction between these two constraint types
is that the evaluation of the key constraint should not yield
any NULL values in any of the component fields, while the
fields in a unique constraint are allowed to evaluate to
NULL.

Identity constraints are defined in the schema document
using a combination of a selector and one or more
field elements. These are sub-elements within a <xs:key>
or <xs:unique> container element. Both selector and
field contain an XPath expression (the evaluation of which
in an XML document yields the value of the constrained
element or attribute). The selector is used to define a
contextual node in the XML document (e.g., product),
relative to which the (combination of) field values is unique
(e.g., @productNo).

An identity constraint may be named, and this name can
then be used when defining a referential integrity constraint
(similar to foreign keys in the relational model). A sample
XML Schema identity constraint is in Listing 7.
...
<xs:key name="productKey">

<xs:selector xpath="product"/>
<xs:field xpath="@productNo"/>

</xs:key>
...

Listing 7. Sample Identity Constraint Definition

Formally, we can define a key constraint as follows. Let
sel be a context node (defined by selector in an identity
constraint), with the list of corresponding field expressions
F = (f1, . . . , fm). In an instance document, there may be
n such selector nodes across the scope of the document.
Using the example in 7, we may have n product nodes.
Let Eval(sel, F ) denote the resultset of evaluating the XPath
expression-list F from the context node sel. Evaluated on a
specific instance document, the resultset will contain n ele-
ments, corresponding to each product node (for example).
For convenience, let us denote the ith element of Eval(sel, F )
by ei. Then, ∀i, j : ei 6= ej unless i = j; i, j ≤ n. In
the case of a unique constraint, the only differences are:
ei ∈ {Eval(sel, F )∪ω} (where ω represents the null value),
and ∀i, j; ei is not ω then ei 6= ej , unless i = j.

There are some similarities between the functionality of
key and unique constraints and the XML 1.0 ID definitions

(and the equivalent ID simple type in XML Schema). How-
ever, the XML Schema key and unique constraints have a
number of advantages. We take advantage of this distinction
when we discuss temporal extensions to the constraints (in
Section ??).

Advantages of XML Schema key over the XML ID are
as follows. XML 1.0 provides a mechanism for ensuring
uniqueness using the ID attribute (and referential integrity
using the associated IDREF and IDREFS attributes). An
equivalent mechanism is provided in XML Schema through
the ID, IDREF, and IDREFS simple types, which can be
used for declaring XML 1.0-style attributes. XML Schema
also introduces two other mechanisms to ensure uniqueness
using the key and keyref constraints that are more flexible
and powerful in the following ways.
• XML Schema keys can be applied to both elements and

attributes. Since ID is an attribute (in DTDs; in XML
Schema an element’s type can be defined as xs:ID), it
cannot be applied to other attributes.

• Using key and keyref allows the specification of the
scope within which uniqueness applies (done by the
selector element; i.e., it is “contextual uniqueness”)
while the scope of an XML ID is the whole document.
Thus using a key constraint one can enforce: “within
each order, the part numbers should be unique”, to ensure
that each order line has a different part number. This
cannot be done using XML IDs.

• Finally, XML Schema enables the creation of a key
or a keyref constraint from combinations of element
and attribute content and does not restrict the possible
datatypes for valid keys. XML IDs consist of single
attribute content, and must be of the ID datatype.

5.1.2 Referential Integrity Constraints
Referential integrity constraints (defined using the keyref
element in an XML Schema document) are similar to the
corresponding constraints in the relational model. Each ref-
erential integrity constraint refers to a valid key or unique
constraint and ensures that the corresponding key value exists
in the document. For example, a keyref can be defined to
ensure that only valid product numbers (i.e., those that exist
for a <product> element) are entered for an order.

A sample definition of a referential integrity constraint in
XML Schema to specify that an order should always be for a
valid product follows.

...
<xs:keyref name="ordersProductRef" refer="productKey">

<xs:selector xpath="order"/>
<xs:field xpath="oProductNo"/>

<xs:keyref>
...

Listing 8. Sample Referential Integrity constraint

Formally, we can define the keyref constraint as follows.
Let Eval(selr, Fr) denote the result of evaluating the list
Fr of keyref XPath field expressions relative to the
selector element selr. Let er be an element from the
list defined by Eval(selr, Fr) (e.g., one of the product nodes
in an XML document). Similarly, let Eval(selk, Fk) denote
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the result of evaluating the referenced key constraint, and
ek ∈ Eval(selk, Fk). The keyref constraint is satisfied
when ∃ek (in the document) such that er = ek.

5.1.3 Cardinality Constraints

The cardinality of elements in XML documents is restricted by
the use of minOccurs and maxOccurs in the XML Schema
document. For example, to limit there being from zero to four
website URLs for suppliers, the minOccurs of <sURL> is
set to 0, and the maxOccurs to 4.

While there can be multiple sub-elements with the same
name, there can be a maximum of one attribute (for exam-
ple, supplierNo) with a given name. The cardinality for
attributes is therefore restricted using either optional or
required. An example of cardinality definitions in XML
Schema follows.

...
<xs:element name="supplier" minOccurs="0"

maxOccurs="unbounded">
<xs:complexType mixed="true">
<xs:sequence>

<xs:element name="sURL" type="xs:anyURI"
minOccurs="0" maxOccurs="4"/>

...
</xs:sequence>
<xs:attribute name="supplierNo" type="xs:integer"

use="required"/>
<xs:attribute name="supplierName" type="xs:integer"

use="required"/>
</xs:complexType>

</xs:element>
...

Listing 9. Cardinality definitions using XML Schema

Let (n, c) be the list of child elements c within node n. We
use |(n, c)| to represent the cardinality of the list (n, c). Then,
minOccurs(c) ≤ |(n, c)| ≤ maxOccurs(c).

5.1.4 Datatype Restrictions

Datatype definitions in XML Schema can restrict the structure
and content of elements, and the content of attributes. We
currently consider datatypes defined using the XML Schema
simpleType element. A simple type is used to specify a
value range. In the simplest case, a built-in XML Schema
datatype (e.g., integer) imposes a value range. For more
complicated requirements, a simple type can be derived from
one of the built-in datatypes.

An example of an XML Schema datatype definition follows.

...
<xs:simpleType name="supplierRating">
<xs:restriction base="xs:string">
<xs:enumeration value="A"/>
<xs:enumeration value="B"/>
<xs:enumeration value="C"/>

</xs:restriction>
</xs:simpleType>
...

Listing 10. XML Schema data type definition

Formally, let type(n) be the set of values that the dataype
assigned to node (element or attribute) n allows. Then, in any
given document instance, the XML expression n/text() ∈
type(n).

6 TEMPORAL AUGMENTATIONS TO XML
SCHEMA CONSTRAINTS

[TODO: Faiz]
(TR: Section 7.2)
• Basics of temporal constraint terminology and approach

(conventional)
• Implicit (e.g., existence time of a child within bounds

of its parent) vs. Explicit temporal document constraints
(XML schema specified)

• How schema versioning affects constraints
from TR

Thus far we have considered conventional XML Schema
constraints. We now proceed to discuss temporal augmenta-
tions to these constraints.

The time frame over which a constraint is evaluated clas-
sifies it into one of two types, either sequenced or non-
sequenced. A temporal constraint is sequenced with respect
to a similar conventional constraint in the schema document,
if the semantics of the temporal constraint can be expressed
as the semantics of the conventional constraint applied at each
point in time. A constraint is non-sequenced if it is evaluated
over a temporal element as a whole (including the lifetime of
the data entity) rather than at a point in time.

Given a conventional XML Schema constraint, the corre-
sponding semantics in τXSchema for a temporal document,
is a sequenced constraint. For example, a conventional (car-
dinality) constraint, “There should be between zero and four
website URLs for each supplier,” has a sequenced equivalent
of: “There should be between zero and four website URLs for
each supplier at each point in time.”

For the non-sequenced extension to constraints, we consider
a window of evaluation, w, which can be a temporal element.
The user specifies the window of evaluation (e.g., a day, or
a Gregorian month). The user can also specify a slide size,
ss, and applicability bounds, B [?]. The default for ss is the
granularity, gran, of the underlying element (or attribute). The
default for B is the lifetime of the temporal document. We’ve
established the following relationship among the components
of a non-sequenced constraint: gran ≤ ss ≤ w ≤ B

The applicability bounds, B ⊆ T , allow the user to restrict
their consideration from the lifetime of the document, to some
desired subset they are interested in. For example, a constraint
may only be valid between 1999-2005, at which time it’s
replaced by a new constraint. Strictly speaking, applicability
bounds can be introduced for sequenced constraints as well.
While the effect of applicability bounds (for a sequenced
constraint) can be simulated by “removing” the constraint from
the schema document (during some time slice), this restricts it
to cases where the transaction time and valid time are identical.

Non-sequenced constraints are evaluated over a temporal
element rather than at a point in time. The window of
evaluation must be within the applicability bounds. So, for
non-sequenced constraints, we replace the evaluation point t,
where t ∈ T , with w ∈ P(B). When size(w) is the same as
size(B), we term it a “fixed-window” constraint. For example,
suppose the constraint requires there to be between 0 and 4
supplier URLs in the temporal document over a period of any
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calendar month. Let’s say this constraint is applicable from
2009-03-01 to 2009-03-31. Here, w and B have the same size.
If, instead the applicability were (2009-03-01 to 2009-06-31),
then we see a case of a “sliding-window” constraint (since the
evaluation would take place during each month from March
through June. Here, we see the the size of the slide is implicitly
a calendar month as well. Let’s say instead, the constraint
evaluation window were a period of 30 days. Then the user
may wish to restrict how this evaluation window would slide.
For example, one may choose to evaluate it from March 1–30,
then from March 2–31, and so on. Here, the size of the slide
(ss) is a single day.

Non-sequenced constraints are listed in the logical anno-
tations document. In a few cases (when we extend a par-
ticular XML Schema constraint for additional functionality),
sequenced constraints are also listed in the logical annotations
document. We now proceed to discuss temporal enhance-
ments to each of the XML Schema constraints described in
section 5.1. The general approach is to add non-sequenced
extensions to each constraint (though for sequenced cardinality
constraints, we add new semantics as well).

7 IDENTITY CONSTRAINTS

[TODO: Faiz]
(TR: Section 7.2.1)
• Definition and how it relates to the XML Schema con-

straint
• Semantics (formal)
• Specification (how the annotation works + example)
from TR

Conventional identity constraints restrict uniqueness in a
given XML document and induce sequenced identity con-
straints in the temporal document. Non-sequenced extensions
may further be defined for these constraints.

We have shown in section 5.1.1 the advantages of XML
Schema identity constraints over defining an element or at-
tribute to have a type of ID. This motivates the following
design decision: we extend the semantics of XML Schema
identity constraints to support non-sequenced semantics, but
do not consider non-sequenced extensions to ID types. If an
element or attribute in an XML Schema document is said to
have a type of ID, then that only translates to a sequenced
constraint.

Formally, we define a sequenced key constraint as follows.
Let T be the set of time points associated with a temporal
XML document over its lifetime. At any given time t (where
t ∈ T ), we can extract a snapshot of the document. As with
the conventional case, let sel be a context node (defined by the
underlying selector), with the list of corresponding field
expressions F = (f1, . . . , fm). Let Evalt(sel, F ) denote the
resultset of evaluating the list of XPath expressions F from
the context node sel at point t. We denote the ith element of
Evalt(sel, F ) by et

i. Then for ∀t ∈ T, ∀i, j : et
i 6= et

j unless
i = j; i, j ≤ n.

The definition of a sequenced unique constraint is similar
(but allows null values).

The non-sequenced extensions to the identity constraint we
consider are: time-invariant unique, time-invariant key, non-
sequenced unique, and non-sequenced key. We discuss each
of these in turn.

A time-invariant restriction specifies that the value of
the given conventional unique or key constraint should
not change over time. Without this restriction, conventional
unique and key constraints simply say that the values must
not have duplicates. However, this does not preclude the values
from changing as long as the new value does not appear
elsewhere in the conventional XML document. For example,
given the key definition for product in Listing 7, the following
snippets (Listings 11 and 12) reflect a perfectly legal change
from one state to another for the productNo attribute (from
500 to 599) within the first <product> element.

...
<product productNo="500">

<name>17" LCD, Model 350</name>
<qtyOnHand>25</qtyOnHand>

</product>
<product productNo="501">

<name>19" LCD, Model 370</name>
<qtyOnHand>10</qtyOnHand>

</product>
...

Listing 11. Initial State for productNo attribute

...
<product productNo="599">

<name>17" LCD, Model 350</name>
<qtyOnHand>25</qtyOnHand>

</product>
<product productNo="501">

<name>19" LCD, Model 370</name>
<qtyOnHand>10</qtyOnHand>

</product>
...

Listing 12. Changed State for productNo attribute

As seen in the previous example, conventional identity
constraints do not necessarily imply a non-sequenced identity
constraint (i.e., a value that can uniquely identify the particular
element or attribute across time). Thus, the same productNo
(a conventional key) can be changed between snapshots (as
long as it remains unique) and re-used for another product.
Additionally, we may end up with two or more products with
the same product number over time. This is why we do not
use the term “temporal identity constraints,” and instead select
non-sequenced unique or non-sequenced key constraints. This
also helps avoid confusion or overlap with the concept of
itemIdentifiers introduced in Part ?? (for schema versioning).

With respect to time-invariance, if productNo is declared
as time invariant, then no change can be made to its value.
A new productNo value indicates an instance of a new
product. The simplest way to ensure time-invariance, is by
defining the item as non-temporal in the logical annotations.
In combination with a unique constraint on the element or
attribute, this is sufficient to provide for time-invariance.

A non-sequenced unique constraint indicates that the unique
value should not be re-used at a later time within an evalua-
tion window. When writing the non-sequenced restrictions in
the logical annotations, we use a newly introduced element
<uniqueConstraint>. We adopt the usual distinction in
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semantics between key and unique (i.e., the permissibility
of null values).

With the refinements introduced in Section ??, we define a
non-sequenced key constraint as follows. Let Evalw(sel, F )
denote the resultset from the evaluation of the key constraint
over window w. An element of this set is ew

i , where ew
i ∈

Evalw(sel, F ). Then, ∀w ∈ P(B),∀i, j : et
i 6= et

j unless
i = j; i, j ≤ n. The effect of the slide size is to determine the
start point for successive i, i + 1, . . . , n. Or in other words,
to constrain the power-set P(B) to have specific temporal
elements.

The next kind of constraint we discuss is
uniqueNullRestricted. Since the XML Schema
definition of unique allows a NULL value at each point
in time, the default semantics for unique allows for
multiple NULL values across time (one in each conventional
document). A non-sequenced uniqueNullRestricted
constraint restricts the appearance of the number of NULL
values by allowing the user to specify a finite number (one
or more) across time; the default number being one. Setting
the number of nulls allowed across time to 0 is equivalent to
specifying a non-sequenced key constraint. A non-sequenced
key constraint, as might be expected, disallows NULL values
in any of the key fields at any time.

We use the term item, to refer to a constrained attribute
or element, and val to a specific value (including null) that
we are interested in. Let temp(DB , w, item, val) evaluate to
the set of maximally coalesced temporal elements associated
with an item within the document D, during the evaluation
window w (applicability bound of B), where the value of item
= val. Then setting val to null, returns the set te where the
item is null. The cardinality, |te|, of the set is the number of
times null appears (counting each contiguous appearance as a
single block); nullCountMin ≤ |te| ≤ nullCountMax.

A more powerful version of the unique (or key) con-
straint allows the user to specify exactly how many times any
key (or unique) value can appear across time other than
NULL. The default is 1—in which case it is identical to a
non-sequenced unique or a non-sequenced key constraint. We
term this constraint as a value cardinality constraint, but do
not explore it for now since it has no XML Schema equivalent.

We now proceed to discuss the different attributes and
sub-elements for the uniqueConstraint (summarized in
Table 1; the sub-elements are indented).
• name: This allows the user to name the constraint and is

useful in case the constraint is referenced elsewhere (e.g.,
in a referential integrity constraint).

• conventionalIdentifier: Specifies the name of
the identifier in the conventional schema document. If
this is not specified, then it implies a new constraint
is being defined and the selector and field sub-
elements should not be empty.

• type: The type is one of key, unique, or
uniqueNullRestricted, the semantics of which
have been discussed previously. By default, the type is
the same as that of the conventional constraint (i.e., key
or unique). In the event a new constraint is defined, the
usage of this attribute (type) is required. Further, an ex-

isting conventional unique constraint can be restricted
to be a non-sequenced key (i.e., no null values allowed),
“for a given period of applicability”. The converse is not
meaningful since coercing a conventional key constraint
to unique in a non-sequenced context would violate the
key constraint during some conventional document state.
Conventional unique constraints can also have a type
of uniqueNullRestricted.

• nullCountMin: Used only in conjunction with the
uniqueNullRestricted constraint to specify how
many nulls are allowed over the non-sequenced time
extent (minimum).

• nullCountMax: Used in conjunction with the
uniqueNullRestricted constraint to specify how
many nulls are allowed over the non-sequenced time
extent (maximum).

• dimension: Specifies the dimension in which the
unique constraint applies and is one of validTime,
transactionTime, or bitemporal. The default is
assumed to be validTime since that is closely related
to capturing real world restrictions, rather than restrictions
on data entry.

• evaluationWindow:1 Specifies the time window over
which the constraint should be checked. This allows
uniqueness to be specified for an interval, e.g., year. This
is useful when, for example, a particular key value should
not be re-used for a period of a year. The value then
must be “unique over any period of a year”. By default
the evaluation window is the lifetime of the time varying
XML document. Assuming we use XML Schema to spec-
ify the datatypes for time intervals, we can extend that
with a union of the string: lifetime. This will allow us
to set the time interval for evaluationWindow (and
other attributes) to a value of lifetime (indicating
a temporal element equivalent to the lifetime of the
XML document). In the constraint examples that follow,
we assume this datatype extension is done and use the
keyword lifetime when needed.

• slideSize: Specifies the size of the slide; must be used
in conjunction with an evaluation window. By default,
it takes the temporal granularity of the underlying item
being constrained.

• applicability:2 The applicability of a constraint
specifies when it was valid. Thus a key constraint may be
enforced between 2005 and 2010. Strictly, the applicabil-
ity need not be a single range, and may be a temporal
element, which is why we specify the applicability as
(begin, end) attribute pairs within a wrapping sub-
element called applicability. If nothing is specified,
the default is assumed to be the lifetime of the document.
The applicability and evaluation window of the constraint
are related. Defining an evaluation window that exceeds
the applicability of the constraint is not really meaningful,
as it cannot be checked beyond the constraint applicabil-

1. Strictly speaking, the evaluation should be defined as a series of
<begin> . . . <end> periods. For simplicity we keep it as an attribute.

2. Applicability applies to the valid time dimension. Transaction-time
applicability would be when a constraint exists in the schema document.
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ity. In such a case, a warning should be returned and the
evaluation window should be shortened to the maximum
allowable within the constraint applicability limits.

• selector and field: The selector specifies the
context within which the combination of field XPath
expressions should evaluate to unique. A selector
can have one of two attributes specified. If the xpath
attribute it specified, it is evaluated relative to the point
of definition (of the constraint) within the document.
The other option is to use a itemref attribute. This
provides schema versioning support by allowing the
selector reference to have flexibility across versions.
The only other requirement for schema versioning, is that
the elements and attributes picked by field, do not
change across schemas (or if they do, the constraint is
redefined). Multiple field sub-elements may be listed.
The combination of these are taken for the constraint
specification. The field sub-elements have a usage
identical to their conventional XML Schema counterparts,
and have a single xpath attribute. selector and
field are needed to specify a new constraint (i.e.,
those that were not defined as identifiers in the con-
ventional schema). If a new constraint is defined, the
conventionalIdentifier attribute should not be
used. A new constraint can be either defined as either a
key or a unique constraint.

We now describe some non-sequenced unique constraint
examples.

1) Supplier numbers are keys but may be re-used over
time—however the reuse should not occur for at least
one year after discontinuation. Supplier numbers are
also allowed to change as long as no other supplier
has that number. Part numbers on the other hand may
not be re-used later, but may change. The constraints
are applicable between 2005 and 2009.
...
<uniqueConstraint type="key" name="idSupplierNo"

conventionalIdentifier="supplier_key"
dimension="validTime"
evaluationWindow="year" slideSize="day">
<applicability begin="2005-01-01" end="2009-12-31"/>

</uniqueConstraint>
...
<uniqueConstraint type="key" name="idPartNo"

conventionalIdentifier="part_key"
dimension="validTime"
evaluationWindow="lifetime">
<applicability begin="2005-01-01" end="2009-12-31"/>

</uniqueConstraint>
...

2) A product’s key (in both valid and transaction time) is
its RFID number. The constraint is applicable from 2007
onwards. A null value may be allowed in the beginning,
but once an RFID tag is attached to the product, it
should not revert to null at a later point.
...
<uniqueConstraint type="key" name="product_RFID"

dimension="bitemporal"
evaluationWindow="lifetime" nullCountMax="1">

<applicability begin="2007-01-01" />
<selector xpath="product"/>
<field xpath="@RFID"/>

</uniqueConstraint>
...

3) Employee email addresses are optional. If they do exist,
they should be unique and should not be re-used for a
two-year period.

...
<uniqueConstraint type="unique" name="employee_email"

evaluationWindow="two-years" slideSize="day"/>
...

8 REFERENTIAL INTEGRITY CONSTRAINTS

[TODO: Faiz]
(TR: Section 7.2.2)
• Similar structure of 3 sections as with Identity constraints;

so also for next two sections.
from TR

Each referential integrity (keyref) constraint for a conven-
tional document leads to a sequenced counterpart in a temporal
document. Thus, each conventional keyref obeys referential
integrity.

A non-sequenced referential integrity constraint is useful to
specify a reference to some past state of the XML document.
Suppose, for example, the “largest order” (in dollar terms)
placed by a customer is stored with the customer data (with
a keyref to orderNo). Also, to maintain a compact XML
document, orders that are over a year old are deleted from the
document. Therefore, a non-sequenced referential the integrity
constraint could state, “The largest order the customer has
placed should be for an order that existed in the document at
some time.”

Formally, we can define the temporal keyref constraint as
follows. Let Evalt(selr, Fr) denote the result of evaluating
the list Fr of keyref XPath field expressions relative
to the selector element selr (at time t, t ∈ B, during
the applicability bounds B). Let er be an element from the
list defined by Evalt(selr, Fr). Similarly, let Evalt(selk, Fk)
denote the result of evaluating the referenced key constraint,
and ek ∈ Evalt(selk, Fk). The keyref constraint is satisfied
when ∃ek (in the document) such that er = ek.

One might think that there should be a limitation preventing
referential integrity constraints within state data referring to
event data. However, for XML, there does not need to be
such a limitation. Consider the following example: Scientists
take readings about the temperature and humidity levels at
an observation post. Each observation can be considered
an event. Information on the scientists on the other hand
is state data. Depending on the structure of the document,
<scientist> can be the enclosing element with keyrefs
to the appropriate <observation> or <observation>
can be the enclosing element with a reference to the scientist(s)
who were responsible for it. Both options can be defined using
XML Schema and should be allowed.

Intuitively, a non-sequenced keyref constraint should
refer to the definition of an identifier that does not permit
re-use. Without the restriction of not permitting re-use, the
semantics of the referential integrity may not be well defined.
For example, if the order number could be re-used, then a
customer’s largest order may end up referencing an order that



16

Term Definition Cardinality
name The name of the constraint optional
conventionalIdentifier The referenced conventional identifier optional
type key, unique, or uniqueNullRestricted (default: the conventional constraint

type)
optional

nullCountMin The number of null values allowable (used only within uniqueNullRestricted) optional
nullCountMax The number of null values allowable (used only within uniqueNullRestricted) optional
dimension validTime, transactionTime, or bitemporal (default: validTime optional
evaluationWindow Time window over which the constraint should be checked (default: lifetime of document) optional
slideSize Size of the slide for successive evaluation windows (default: granularity of constrained

data type); Only used in conjunction with evaluationWindow
optional

applicability When the constraint is applicable (default: lifetime of document) [0:1]
(begin, end) Temporal element to specify applicability, with a series of intervals [0:U]

selector For the definition of a new constraint. It is similar to the selector sub-element in the
uniqueConstraint definition

[0:1]

field For the definition of a new constraint. It is similar to the field sub-element in the
uniqueConstraint definition

[0:U]

TABLE 1
Attributes and sub-elements for uniqueConstraint

was not originally placed by that customer. Not permitting re-
use of order numbers however is a strict constraint that can be
omitted if the largestOrderNo has a valid-time timestamp.
Then, the non-sequential reference can be understood to be for
a specific order number that was valid at the begin time of the
largestOrderNo.

We represent a non-sequenced referential integrity con-
straint using a nonSeqKeyref element in the logical an-
notations. Next, we proceed to discuss the different attributes
and sub-elements for the nonSeqKeyref (summarized in
Table 2; the sub-elements are indented).

• name: This allows the user to name the constraint and is
useful in case the constraint is referred to elsewhere. In
a managed environment, this would also aid in allowing
constraints to be disabled or dropped.

refer: Denotes a referenced constraint (either conventional or
temporal), i.e., the name of the constraint, that the non-
sequenced referential integrity constraint refers to. If the
constraint being referred to is a conventional keyref,
then it is in effect just extending the semantics of the con-
ventional constraint (e.g., with an applicability bounds).
In this case, it inherits the referred key constraint infor-
mation. If this is a new constraint, then we need to refer
to both an existing key (either conventional or temporal),
and define the selector and field properties.

• applicability: A non-sequenced keyref can be asso-
ciated with a particular applicability that specifies
when it was in effect. If the applicability is not specified,
the default is assumed to be the lifetime of the document.
As with uniqueness constraints, the applicability can be
a temporal element.

• selector and field: These two sub-elements have
a usage identical to their uniqueConstraint coun-
terparts, but are needed to specify a new constraint
(i.e., those that were not defined as referential integrity
constraints in the conventional schema).

New non-sequenced referential integrity constraints may be
defined (i.e., those that were not defined as a keyref in the
conventional schema).

resume
1) A non-sequenced referential integrity constraint is to be

defined for the product number in orders. We assume
an existing referential integrity constraint exists in the
conventional schema. The name of the corresponding
keyref is ordersProductRef which references a
valid part number. The constraint is applicable from
2005–2009.

...
<nonSeqKeyref name="ordersProductRef_NS"

refer="ordersProductRef">
<applicability begin="2005-01-01" end="2009-12-31"/>

</nonSeqKeyref>
...

2) A non-sequenced referential integrity constraint is to
be defined for the customer email in orders. It should
reference a valid email address. The correspond-
ing unique constraint within customers is defined as
custEmailsUnique. The referential integrity con-
straint is applicable from 2008–2012, and no corre-
sponding conventional constraint exists.

...
<nonSeqKeyref name="ordersCustEmailRef"

refer="custEmailsUnique">
<applicability begin="2008-01-01" end="2012-12-31"/>
<selector xpath="order"/>
<field xpath="oCustEmail"/>

</nonSeqKeyref>
...

9 CARDINALITY CONSTRAINTS

[TODO: Faiz]
(TR: Section 7.2.3)
from TR

As discussed in Section 5.1.3, the cardinality of elements
in conventional documents is restricted by using minOccurs
and maxOccurs, and that of attributes by using optional
and required. These automatically induce sequenced con-
straints in the temporal document.

Non-sequenced constraints can be used to restrict the cardi-
nality over time. Consider the example of an order element
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Term Definition Cardinality
name The name of the constraint optional
refer The referenced identifier or referential integrity constraint optional

applicability When the constraint is applicable (default: the lifetime of the document) [0:U]
selector Used in the definition of a new constraint [0:1]
field Used in the definition of a new constraint [0:U]

TABLE 2
Attributes and sub-elements for nonSeqKeyref

in Listing 13. We see that the deliveredOn element may
not always be present in a specific document snapshot. Let
us further say, that while it may be empty at the time the
order was placed, we require it to be appear at some point
(say within three months of the order being placed). So, even
though minOccurs="0" is satisfactory for a conventional
document, we may desire the equivalent minOccurs="1"
for a temporal document.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
...

<xsd:element name="order">
<xsd:complexType>
<xsd:sequence>

<xsd:element name="orderNo" type="xsd:string" />
<xsd:element name="orderDate" type="xsd:date" />
<xsd:element name="deliveredOn"

minOccurs="0" maxOccurs="1"
type="xsd:date" />

...
<xsd:element ref="product" minOccurs="1"

maxOccurs="unbounded" />
...

</xsd:sequence>
</xsd:complexType>

</xsd:element>
...

Listing 13. Orders with an optional deliveredOn

For attributes, a similar requirement may be placed (i.e., a
snapshot optional attribute, may be required over some
evaluation window).

Another refinement that may be desired for a non-sequenced
cardinality constraint is the aggregation level at which the
count is being performed. Let’s consider the schema in List-
ing 14. A non-sequenced cardinality constraint can be used
to place a limit of one hundred orders from a supplier in
any given year. In this case, order is the direct child of
suppliers, and the conventional maxOccurs constraint (on
order) would be used to restrict the number of child order
elements a supplier can have. Suppose, we wished to
further constrain the number of orders for the company
across the all suppliers to 1500 per month. In other words,
the number of order elements that were descendants of
company) should be ≤ 1500 in any calendar month. The
conventional cardinality constraints are not designed to handle
this. This is our motivation behind introducing the aggLevel
option for a cardinality constraint.

...
<xsd:element name="company">
...
<xsd:element name="supplier" minOccurs="1"

maxOccurs="unbounded">
...

<xsd:element ref="order" minOccurs="0"
maxOccurs="unbounded" />

...

</xsd:element>
..
</xsd:element>
...

Listing 14. Considering Aggregation Levels for an order

We represent temporal cardinality constraints using a
cardConstraint element in the logical annotations doc-
ument. Formally, we define the cardConstraint (of type
childList)as follows. Let:
• sel be a context node (defined by selector in a

cardinality constraint), with the list of corresponding
field expressions F = (f1, . . . , fm).

• ancestorOf(n, a) return true if a is an ancestor of
node n, and false otherwise.

• For two lists L1 and L2, let L1 ] L2 return the result of
appending the members of L2 to L1.

• evalw(sel, F ) be the result returned by the evaluation of
F relative to sel (over the evaluation window w). There
may be many nodes corresponding to a given sel (e.g.,
many supplier nodes), and each such (supplier)
node can have many children. Therefore evalw(sel, F )
returns a list of lists.

• childListi ∈ evalw(sel, F ) be the ith, member (also a
list) of the result.

• childListAggr = aggr(childlisti, aggLevel) be the
aggregation of the various childListi at the an-
cestor level of aggLevel; i.e., childListAggr =
(childList1] . . .]childListi] . . .]childListn), where
∀i, ancestorOf(sel, aggLevel) is true.

Then the cardConstraint restricts: min ≤
|childListAggr| ≤ max, if an aggLevel is defined.
If the aggLevel is empty, then: min ≤ |childList| ≤ max.
Here |list| is the count of members in the list.

The definition for childList can be modified for set
semantics, childSet, by only considering distinct elements
(i.e., duplicates are not considered). This brings up the is-
sue of how to determine if two nodes are duplicates. One
option is to go with the understanding of DOM-equivalence
defined in Section 4.4. Another option is to consider two
nodes equivalent if the values of their corresponding unique
constraints match. When defining the uniqueref attribute
in cardConstraint, the selector XPath for the unique
constraint definition should match the node being counted in
the cardinality constraint (i.e., the field XPath expression
in cardinality).

Formally, we let:
• childSeti ∈ evalw(sel, F ) be the list of child nodes

returned by the evaluation of the XPath expressions F
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relative to sel (over the evaluation window w).
• childSetAggr = aggr(childSeti, aggLevel) be the

aggregation of the childSeti resultsets at the an-
cestor level of aggLevel; i.e., childSetAggr =
(childSet1 ∪ . . . ∪ childSeti ∪ . . . ∪ childSetn), where
∀i, ancestorOf(sel, aggLevel) is true.

Then the cardConstraint restricts: min ≤
|childSetAggr| ≤ max, if an aggLevel is defined. If
the aggLevel is empty, then: min ≤ |childSet| ≤ max.
Here we use the notation |childSet| is the cardinality, that is,
the count of members in the childSet. As can be seen, the
definitions for the restriction type of childSet are
very similar to the definition for the type of childList.

resume
1) There should be no more than fifty active suppliers (i.e.,

in the “database”) in any year. This constraint is true
between 2007 and 2009. [childList constraint]

...
<cardConstraint name="supplierCardYear"

restriction="childList" dimension="validTime"
evaluationWindow="year" slideSize="day"
max="50">
<selector xpath="company" />
<field xpath="supplier" />
<applicability begin="2007-01-01" end="2009-12-31"/>

</cardConstraint>
...

2) No supplier should be given more than one hundred
orders in a calendar month month. These orders should
not be for more than five hundred different products.
Note: we do not do SUM type constraints here, since
they are not an extension of minOccurs or maxOccurs
(Different kinds of aggregation).

...
<cardConstraint name="supOrders"

restriction="childList" dimension="validTime"
evaluationWindow="month" slideSize="month"
max="100">
<selector xpath="company/supplier" />
<field xpath="order" />

</cardConstraint>
<cardConstraint name="supParts"

restriction="childList" dimension="validTime"
evaluationWindow="month" slideSize="month"
aggLevel="company/supplier" max="500">
<selector xpath="company/supplier/order" />
<field xpath="product" />

</cardConstraint>
...

3) There should be a maximum of 250 potential suppliers
for the company across all products. We assume there
exists a unique constraint on the potential supplier’s
supplierNo attribute. This constraint is to be enforced
during 2009. [Sequenced constraint; use of childSet]
This is a sequenced constraint. However it cannot
be enforced by a combination of a minOccurs and
maxOccurs.

...
<cardConstraint name="potential_suppliers_seq"

restriction="childSet"
uniqueRef="potential_supplierNo"
dimension="validTime" sequenced="true"
aggLevel="company" max="250">
<selector xpath="company/product" />
<field xpath="potential_supplier" />
<applicability begin="2009-01-01" end="2009-12-31"/>

</cardConstraint>
...

Another kind of constraint we consider is restricting the
cardinality of the valueList, i.e., the min/max number of
“values” that an element or attribute can have over a specific
evaluation window. This constraint does not have an XML
Schema equivalent. So it does not fit into a strict extension of
XML Schema semantics.

A valueList restriction is related to the datatype of the
item (which specifies the possible values an item can take).
For example, suppose an order status attribute can have
one of the five following values: placed, underReview,
being_processed, shipped, and returned. It is pos-
sible that changes to the order can have it swap back and forth
between underReview and being_processed. There-
fore over a period of a month, it can potentially have seven
values. However the number of distinct values that status can
have is five or fewer. In this sense, the valueList and
valueSet restriction kinds are analogous to the SQL notion
of COUNT(attribute) and COUNT(distinct attribute).

For both of the two valueList restrictions, child ele-
ments (or attributes) are not being counted. Instead it is the
value of the element (or attribute) itself. So, the semantics
of the cardConstraint/selector element is different
from that for childList or childSet. In the latter, the
selector is used to set up the context node, relative to
which the child items described by the field nodes are
counted. With valueList constraints, the selector is
used to decide the item for which the values will be counted.
Typically for the valueList cardinality constraints, the
field expression will contain a terminal /text() function.

The formal definition for valueList and valueSet
constraints are similar to those for childList and
childSet. The main difference being in the evalw(sel, F )
function, which instead of returning a list (or set) of nodes
(element or attribute), returns the value or content of those
nodes. An example of a valueList and valueSet cardi-
nality constraints follows.

resume

1) A product should have only one name in any month, but
can have up to three distinct names in a year. This is in
force during 2008–2010. [valueList and valueSet
constraints; different evaluation window sizes used]

...
<cardConstraint name="prodNameMonth"

restriction="valueList" dimension="validTime"
evaluationWindow="month" slideSize="day"
min="1" max="1">

<selector xpath="product" />
<field xpath="@productName/text()" />
<applicability begin="2008-01-01" end="2010-12-31"/>

</cardConstraint>
<cardConstraint name="prodNameYear"

restriction="valueSet" dimension="validTime"
evaluationWindow="year" slideSize="day"
min="1" max="3">

<selector xpath="product" />
<field xpath="@productName/text()" />
<applicability begin="2008-01-01" end="2010-12-31"/>

</cardConstraint>
...
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We now proceed to discuss the different attributes and sub-
elements for the cardConstraint (summarized in Table 3;
the sub-elements are indented).

• name: This allows the user to name the constraint and is
useful in case the constraint is referenced later.

• restriction: Cardinality constraints can restrict
the childList, childSet, valueList, and
valueSet counts of elements and attributes.
childList refers to the actual number of sub-elements
that can appear over time, and is analogous to the
conventional minOccurs and maxOccurs for sequenced
constraints. The difference between childList and
childSet is similar, in that duplicate sub-elements are
not counted for childSet. Duplication is determined
using by referencing an applicable uniqueness constraint
(which in terms specifies the fields to be evaluated).

• uniqueRef: Used along with childSet to eliminate
duplicates.

• dimension: Specifies the dimension in which the car-
dinality constraint applies and is one of validTime,
transactionTime, or bitemporal.

• evaluationWindow: Associated with a non-
sequenced cardinality constraint is the time window
over which the constraint should be checked. This
allows cardinality minimum and maximum ranges to
be specified for an interval, e.g., year. This is useful,
for example, when a restriction needs to be put on how
many orders suppliers can handle in any given period.
By default the time window is the lifetime of the XML
document.

• slideSize: Associated with the time window of eval-
uation. By default it is the granularity of the underlying
data type.

• sequenced: Denotes if the constraint is sequenced or
not (using either true or false). This is allowed
in the constraint specification since XML Schema only
allows minOccurs and maxOccurs to be aggregated
at the target parent level. Allowing a different aggregation
level is useful, for example, if instead of restricting
the number of potential suppliers for a product (assum-
ing <potential_suppliers> is a child element of
<product>), we wish to restrict the total number of
potential suppliers the company maintains relationships
with at any time. If a constraint is specified as sequenced,
the evaluationWindow attribute must not be used.

• tt aggLevel: Specifies the level at which the aggregation
is performed for cardinality constraints; by default it is
at the level of the target’s parent. This is also the reason
why we allow sequenced cardinality specifications. For a
sequenced constraint to be useful, the aggregation level
should not be the target’s parent.

• min and max: Specify the minimum and maximum
cardinality respectively.

• selector and field: These two sub-elements have a
usage identical to XML Schema usage for conventional
constraints.

• applicability: The constraint applicability specifies

when it was in effect. If the applicability is not specified,
the default is assumed to be the lifetime of the document.
The applicability can be a temporal element.

10 DATATYPE RESTRICTIONS

[TODO: Faiz]
TR: Section 7.2.4
from TR

10.1 Datatype Restrictions (Constraints)

As mentioned in section 6.1.4, we currently consider non-
sequenced augmentations to the XML Schema simpleType
element. A simple type is used to specify a value range
and induces a sequenced constraint that ensures conventional
document values conform to this range.

A non-sequenced equivalent of this type of constraint
can be considered either at the schema level (i.e., datatype
evolution—within schema evolution) or at the instance level
(transition constraints). Schema-level constraints restrict the
kinds of changes possible to the datatype of an item. However,
we do not see much need for this type of a constraint.

At the instance level (i.e., conforming to a particular type
specification), a temporal constraint could restrict discrete
and continuous changes. Discrete changes can be handled by
defining a set of value transitions for the data. For example, it
could be specified that while supplier ratings can change over
time, the changes can only occur in single-step increments
(i.e., B to either A or C). Continuous changes are handled
by defining a restriction on the direction of the change. For a
transition constraint to be applicable, a corresponding datatype
should be defined at the conventional schema level.

We now proceed to discuss the different attributes and sub-
elements for the transitionConstraint (summarized in
Table 4; the sub-elements are indented).
• name: This allows the user to name the constraint and is

useful in case the constraint is referenced elsewhere.
• dimension: Specifies the dimension in which the

unique constraint applies and is one of validTime,
transactionTime, or bitemporal. The default is
validTime since a cardinality constraint on transaction
time is akin to specifying how many “data entry changes”
can be made to an element or attribute.

• selector and field: These two sub-elements have
a usage identical to their conventional XML Schema
counterparts.

• valuePair: This is used to list possible pairs for
discrete changes. The pairs themselves are specified as
<old> and <new> sub-elements. valuePair cannot be
used simultaneously with valueEvolution. The val-
ues listed here should be within the range of values
defined for the conventional simpleType datatype.

• valueEvolution: This sub-element lists the direction
for continuous changes. Only one of valuePair and
valueEvolution should be used. The values listed
here should be within the range of values defined for
the conventional simpleType datatype. Continuous
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Term Definition Cardinality
name The name of the constraint optional
restriction One of childList, childSet, valueList, valueSet required
uniqueRef Reference to a uniqueness constraint—only used with childSet optional
dimension Either validTime or transactionTime (default: validTime) optional
evaluationWindow Time window over which the constraint should be checked (default: lifetime of document) optional
slideSize Size of the slide for successive evaluation windows (default: granularity of constrained

data type); Only used in conjunction with evaluationWindow
optional

sequenced If it is a sequenced constraint (default: false) optional
aggLevel The level at which the aggregation is performed (default: parent level) optional
min minOccurs equivalent (default: 0) optional
max maxOccurs equivalent (default: unbounded) optional

selector Role and definition is similar to the selector sub-element in the conventional XML
Schema constraint definitions (e.g., for keyref constraints)

[1:1]

field Similar to the field sub-element in the conventional XML Schema constraint defini-
tions. Allowing for multiple field elements lets us constraint combinations of entities.

[1:U]

applicability When the constraint is applicable (default: lifetime of the document) [0:U]

TABLE 3
Attributes and sub-elements for cardConstraint

changes of the following direction are currently sup-
ported:

– strictlyIncreasing: the value should be
strictly increasing

– strictlyDecreasing: the value should be
strictly decreasing

– nonIncreasing: the value should be non-
increasing

– nonDecreasing: the value should be non-
decreasing

– equal: the value should be equal, i.e., no change
allowed.

The last type, equal, should only be used in conjunction
with the applicability begin and applicability end to
restrict when the value of a particular element or attribute
(e.g., salary) should not change. This allows us flexibility
over annotating salary to be non-temporal since the user
may wish to place this restriction only between “March
2009 and June 2009”.

• applicability: The constraint applicability specifies
when it was in effect. If the applicability is not specified,
the default is assumed to be the lifetime of the document.
The applicability can be a temporal element.

resume

1) Supplier Ratings can move up or down a single step at
a time (for example, from A to B, or B to A; but not
from A to C) in valid time but no restrictions are placed
in transaction time (since a data entry error might be
made). This is applicable between 2008 and 2010.

...
<transitionConstraint name="supplierRating"

dimension="validTime">
<selector xpath="supplier"/>
<field xpath="supplierRatingType"/>
<valuePair> <old>A</old> <new>B</new> </valuePair>
<valuePair> <old>B</old> <new>A</new> </valuePair>
<valuePair> <old>B</old> <new>C</new> </valuePair>
<valuePair> <old>C</old> <new>B</new> </valuePair>
<applicability begin="2008-01-01" end="2010-12-31"/>

</transitionConstraint>
...

2) Employee Salaries should not go down, but may increase
between 2008 and 2009. However, a salary freeze is in
place between January and June 2009 due to economic
factors.

...
<transitionConstraint name="employeeSalary1"

dimension="validTime">
<selector xpath="employee"/>
<field xpath="salary"/>
<valueEvolution direction=">=" />
<applicability begin="2008-01-01" end="2009-12-31"/>

</transitionConstraint>

<transitionConstraint name="employeeSalary2"
dimension="validTime">

<selector xpath="employee"/>
<field xpath="salary"/>
<valueEvolution direction="=" />
<applicability begin="2009-01-01" end="2009-06-30"/>

</transitionConstraint>
...

11 IMPLEMENTATION CONSIDERATIONS

[TODO: Steve]
(TR: Section 10.6)
• An architectural overview of how to implement constraint

validation (without actually discussing specific functions
or algorithmic details)

• An explanation where schema constraint functionality
should be placed

From TR To this point we have focused on how the
user describes his temporal documents and their schemas. We
now turn to examine where schema constraint functionality
is placed and the issues that arise when validating temporal
constraints. In this section we focus on the latter.

Before facing these issues, it is convenient to discuss the ap-
proach that the τXSchema tools take to validate temporal con-
traints. Figure 2 shows the overall architecture of the tools as
they manage XML documents and their schemas. A sequence
of non-temporal documents is input into SQUASH to create a
temporal representation; this document can then be validated
using τXMLLINT and SCHEMAMAPPER. UNSQUASH can
be used to reconstruct the original non-temporal documents
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Term Definition Cardinality
name The name of the constraint optional
dimension Either validTime or transactionTime (default: validTime) optional
selector Role and definition is similar to the selector sub-element in the conventional XML

Schema constraint definitions (e.g., for keyref constraints)
[1:1]

field Similar to the field sub-element in the conventional XML Schema constraint defini-
tions. Allowing for multiple field elements lets us constraint combinations of entities.

[1:U]

valuePair Sub-element listing possible pairs for discrete changes
old, new Sub-elements of valuePair

valueEvolution Sub-element specifying direction of continuous changes
applicability When the constraint is applicable (default: lifetime of document) optional

TABLE 4
Attributes and sub-elements for transitionConstraint

Conventional
Validator

Temporal
Constraint
Validator

SCHEMA
MAPPER

Representational
Schema

Messages
ErrorDocument

Schema
Temporal

Temporal 

Fig. 7. Validating a document with Time-Varying Data:
τXMLLINT.

from the temporal representation, while RESQUASH can be
used to create a new representation (e.g., different timestamp
locations) from a given representation.

Figure 7 provides the validation procedure used by
τXMLLINT. The first step is to pass the temporal schema into
τXMLLINT, which ensures that the logical and physical an-
notations are consistent with the conventional schema and with
each other. Once the annotations are found to be consistent,
SCHEMAMAPPER is invoked to generate a representational
schema from the original conventional schema and the logical
and physical annotations. The representational schema is then
used as the schema for the temporal document and input into a
conventional validator (in this case, XMLLINT). The next step
is to pass the temporal document and the temporal schema to
Temporal Constraint Validator Module. This step is to enforce
temporal constraints that are not possible to be enforced by
the representational schema alone.

A key design decision during the validation of temporal con-
straints is the placement of functionality: should a constraint
be implemented in the representational schema or within the
temporal constraint validator? Implementing (or expressing,
or enforcing) constraints in the representational schema may
provide faster validation since a conventional validator can
be invoked directly, but may result in increased size and
complexity of the representational schema. Conversely, imple-
menting constraints in the temporal validator may yield small
and compact schemas, but requires more time to perform the
validation since the tools must perform checks across all slices
sequentially and individually in the worst case.

In the following sections we explore two issues related to the
placement of functionality. First, we determine which temporal
constraints are possible to be expressed in a representational

schema using the item-based representation class3 and which
can only be implemented in the temporal constraint validator.
Second, for those constraints that can be implemented in both
the schema and the temporal constraint validator, we provide
a brief analysis of the tradeoffs between the two placements.

11.1 Constraints

In this section we discuss both sequenced (enforced at each
point in time) and non-sequenced (enforced on the temporal
document as a whole) constraints and determine for each
whether it is possible to express that constraint in the rep-
resentational schema. For both sequenced and non-sequenced
constraints, we focus on the following classes of constraints.
• Identity constraints: These constraints restrict uniqueness

of elements and attributes in a given document. Identity
constraints are defined in the schema document using
a combination of <selector> and <field> sub-
elements within an <key> or <unique> element.

• Referential Integrity constraints: These constraints, de-
fined using the <keyref> element, are similar to the
corresponding constraints in the relational model. Each
referential integrity constraint refers to a valid key or
unique constraint and ensures that the corresponding key
value exists in the document. For example, a <keyref>

can be defined to ensure that only valid product numbers
(i.e., those that exist for a <product> element) are
entered for an order.

• Cardinality constraints: The cardinality of elements in
XML documents is restricted by the use of minOccurs

and maxOccurs in the XML Schema document. The
cardinality of attributes is restricted using optional,
required, or prohibited.

• Datatype : Datatype definitions can restrict the structure
and content of elements, and the content of attributes. For
example, a datatype definition can restrict the content of
an element <age> to be between 0 and 100.

Table 5 provides a sneak-peak summary of which of the eight
classes of constraints we claim can be implemented in the
representational schema in the general case. We now provide
an argument for each cell of this table in turn.

3. Section ?? introduces and describes the four kinds of representation
classes and Section 11.4 outlines how the other three classes affect this
analysis.
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Identity Referential Cardinality Datatype
Sequenced × × X X

Non-sequenced × × × ×

TABLE 5
The classes of constraints that can be implemented in a

representational schema in the general case.

11.2 Sequenced Constraints
In this section we examine whether each class of sequenced
constraints can be enforced by a representational schema.
Given a conventional XML Schema constraint, we define the
corresponding logical semantics in XML Schema in terms of
a sequenced constraint. For example, a conventional (cardinal-
ity) constraint, “There should be between 0 and four 4 URLs
for each supplier,” has the following sequenced constraint:
“There should be between 0 and 4 website URLs for each
supplier at every point in time.”

For each sequenced constraint below we use the following
approach. If we claim that the constraint can be enforced
by a representational schema, we outline a method that can
be used by the τXSchema tools to transform the sequenced
constraint syntax into standard XML Schema syntax. If, on the
other hand, we claim that the constraint cannot be enforced
by a representational schema, we provide a counter example
that illustrates the specific shortcoming of XML Schema that
forbids the constraint to be enforced.

11.2.0.1 Identity Constraints: We claim that identity
constraints of elements and attributes cannot be enforced in
a representational schema in the general case. To see this,
consider the following example. In this example, we require
<zip> elements to have unique code attributes via an identity
constraint named zipUnique.
...

<xs:unique name="zipUnique">
<xs:selector xpath="zip"/>
<xs:field xpath="@code"/>

</xs:unique>
...

Listing 15. XML Schema <unique>.

...
<zip code="85721"> Tucson, AZ </zip>
<zip code="85001"> Phoenix, AZ </zip>

...

Listing 16. Unique codes (slice 1).

Now suppose the user were to change the code for Tucson
to be the same as Phoenix (violating the conventional schema’s
identity constraint), and then back again.
...
<zip code="85001"> Tucson, AZ </zip>
<zip code="85001"> Phoenix, AZ </zip>

...

Listing 17. Slice 2 (invalid).

...
<zip code="85721"> Tucson, AZ </zip>
<zip code="85001"> Phoenix, AZ </zip>

...

Listing 18. Slice 3 (valid).

Assuming that the physical annotations place the time-
stamps at the <zip> element level, the above actions would
create an item-based representation similar to the one shown
in Listing 19.

...
<zip_RepItem>
<zip_Version begin="1" end="1">
<zip code="85721"> Tucson, AZ </zip>

</zip_Version>
<zip_Version begin="2" end="2">
<zip code="85001"> Tucson, AZ </zip>

</zip_Version>
<zip_Version begin="3">
<zip code="85721"> Tucson, AZ </zip>

</zip_Version>
</zip_RepItem>

<zip_RepItem>
<zip_Version begin="1">
<zip code="85001"> Phoenix, AZ </zip>

</zip_Version>
</zip_RepItem>
...

Listing 19. Squashed version of the three slices.

With this representation, there is no way to create an identity
constraint in XML Schema that can detect that both code

values at time 2 are the same. If the constraint were constructed
to restrict all ./zip_RepItem/zip_Version/zip/@code

values4 to be unique, this would fail since at times 1 and
3, Tucson has a code value of 85701, and this is legal in
our temporal constraint. If the constraint were constructed
to require all ./zip_Version/zip/@code within each
./zip_RepItem to be identical, this would also fail since
the user is allowed to change the zip code from slice to slice.

One could imagine extending the constraint shown in
Listing 15 to include key specification fields begin and
end for the valid times associated with each version of the
zip element, as shown in Listing 20 on lines 29 and 30, with
the corresponding attributes in the element specification.

...
<xs:unique name="zipUniqueAttempt">
<xs:selector xpath="zip"/>
<xs:field xpath="@code"/>
<xs:field xpath="@begin"/>
<xs:field xpath="@end"/>

</xs:unique>
...

Listing 20. XML Schema <unique> with additional fields.

As long as the begin and end attributes are maintained
in proper order (which can be checked by τXMLLINT), the
keys will uniquely identify each key within each snapshot.
Listing 21 below shows an example where the addition of

4. This is XPath code [?].
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such attributes will achieve the desired functionality. Here, the
conventional validator would detect that the zip elements on
lines 95 and 104 are in violation of the unique constraint,
which is indeed correct.

...
<zip_RepItem>
<zip_Version begin="1" end="1">

<zip code="85721" begin="1" end="1"> Tucson, AZ </zip>
</zip_Version>
<zip_Version begin="2" end="2">

<zip code="85001" begin="2" end="2"> Tucson, AZ </zip>
</zip_Version>

</zip_RepItem>

<zip_RepItem>
<zip_Version begin="1" end="1">

<zip code="85001" begin="1" end="1"> Phoenix, AZ </zip>
</zip_Version>
<zip_Version begin="2" end="2">

<zip code="85001" begin="2" end="2"> Phoenix, AZ </zip>
</zip_Version>

</zip_RepItem>
...

Listing 21. Squashed document with multiple changes

However, this approach will not succeed in the general case
because it only enforces uniqueness at the interval end points
and not anywhere within the interval. For example, consider
the excerpt from a squashed document shown in Listing 22.
We see that the elements on lines 95 and 101 conflict our
desired constraint, but since the begin attributes are distinct,
XML does not detect an error.

...
<zip_RepItem>
<zip_Version begin="1" end="1">

<zip code="85721" begin="1" end="1"> Tucson, AZ </zip>
</zip_Version>
<zip_Version begin="2" end="2">

<zip code="85001" begin="2" end="2"> Tucson, AZ </zip>
</zip_Version>

</zip_RepItem>

<zip_RepItem>
<zip_Version begin="1" end="2">

<zip code="85001" begin="1" end="2"> Phoenix, AZ </zip>
</zip_Version>

</zip_RepItem>
...

Listing 22. Squashed document with multiple changes

We are thus forced to conclude that XML Schema lacks
sufficient capability to discriminate time boundaries in a way
that would allow sequenced identity constraints to be enforced.

11.2.0.2 Referential Integrity Constraints: We claim
that referential integrity constraints cannot be implemented
in a representational schema. The argument is similar to that
for identity constraints: there is no way to create a constraint
in XML Schema that can both satisfy referential integrity and
time issues. Consider the example shown below.

...
<!-- Defines a key named "pNumKey" -->
<key name="pNumKey">
<selector xpath="states/state"/>
<field xpath="@id"/>

</key>

<!-- Says that the "state" attribute -->
<!-- in <zip><city></zip> elements -->
<!-- must match a pNumKey. -->
<keyref name="stateMatcher"

refer="r:pNumKey">
<selector xpath="regions/zip/city"/>

<field xpath="@state"/>
</keyref>
...

Listing 23. A referential constraint.

...
<regions_RepItem>

<regions_Version begin="1" end="1">
<regions>
<zip code="85701">
<city state="1"/>

</zip>
</regions>

</regions_Version>
<regions_Version begin="2" end="3">
<regions>
<zip code="85701">
<city state="6"/>

</zip>
</regions>

</regions_Version>
</regions_RepItem>

<states_RepItem>
<states_Version begin="1" end="2">
<states>
<state id="1">Arizona</state>
<state id="2">California</state>

</states>
</states_Version>
<states_Version begin="3" end="3">
<states>
<state id="6">Arizona</state>
<state id="2">California</state>

</states>
</states_Version>

</states_RepItem>
...

Listing 24. Squashed document.

Here, we have a constraint that says “A city element’s state
attribute must match an existing state element’s id attribute
at every point in time.” The squashed document shows that
this constraint is satisfied at times 1 and 3, but violated at
time 2 since Arizona will point to a non-existent state id. To
construct an XML Schema that could describe this situation,
one would need to be able to somehow discriminate between
different <regions_Version> elements according to their
begin and end attributes, but there is no such way to
accomplish this without the help from a procedural language
like XQuery [?]. We are again forced to conclude the XML
schema lacks sufficient mechanisms to enforce a referential
constraint.

11.2.0.3 Cardinality Constraints: We claim that the
cardinality of both elements and attributes can be enforced in
the representational schema. Consider an element e which has
created a logical item i. If the lowest timestamp is located at
a ancestor or descendent of e, then no change to the definition
of e from the original schema is necessary, only a direct copy
into the representational schema. If a timestamp is located at
i, then the cardinality constraint information must be moved
from e up to i in the representational schema. Since there must
be one item for each original element, ensuring that we have
a particular number of items is the same as ensuring that we
have a particular number of original elements.

Listings 25 and 26 below show an example constraint: “The
element <supplier> can occur exactly 1 or 2 times.” We first
assume that the physical timestamps—specified in the tempo-
ral schema—are placed at a predecessor or successor element
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of the <supplier> element. In this case the specification
of the <supplier> element requires no modification in the
representational schema.

...
<xs:element name="supplier"

minOccurs="1" maxOccurs="2">
...

</xs:element>
...

Listing 25. Conventional schema 1.

...
<xs:element name="supplier"

minOccurs="1" maxOccurs="2">
...

</xs:element>
...

Listing 26. Representational schema 1.

Listings 27 and 28 show the same example as above, except
now the physical timestamps are located at the level of the
<supplier> element. In this case, the transformation pushes
the constraints up to the <supplier_RepItem> element.

...
<xs:element name="supplier"

minOccurs="1" maxOccurs="2">
...

</xs:element>
...

Listing 27. Conventional schema 2.

...
<xs:element name="supplier_RepItem"

minOccurs="1" maxOccurs="2">
...
<xs:element name="supplier_Version">

...
<xs:element name="supplier">
...
</xs:element>

</xs:element>
</xs:element>

...

Listing 28. Representational schema 2.

11.2.0.4 Datatype Constraints: We claim that datatype
definitions of both elements and attributes can be enforced in
the representational schema. This can be achieved by copying
the datatype definition for each element in the original schema
into the representational schema. Since datatype restrictions
are not affected by the location of timestamps, the transfor-
mation is trivial in all cases. See Listings 29 and 30 for an
example of the datatype constraint: “The element <age> must
have a value between 0 and 100, inclusive, at all times.” No
changes to the constraint must be made in the transformation.

...
<xs:element name="age">
<xs:simpleType>

<xs:restriction base="xs:integer">
<xs:minInclusive value="0"/>
<xs:maxInclusive value="100"/>

</xs:restriction>
</xs:simpleType>

</xs:element>
...

Listing 29. Datatype conventional schema.

...
<xs:element name="age">
<xs:simpleType>
<xs:restriction base="xs:integer">
<xs:minInclusive value="0"/>
<xs:maxInclusive value="100"/>

</xs:restriction>
</xs:simpleType>

</xs:element>
...

Listing 30. Datatype rep. schema.

11.3 Non-sequenced Constraints

Non-sequenced constraints are constraints applied to a tem-
poral element as a whole (including the lifetime of the
data entity) rather than individual time slices. Non-sequenced
constraints are not defined on conventional XML Schema
equivalents. An example of a non-sequenced (cardinality)
constraint is: “There should be no more than 10 URLs for
each supplier in any year.”

We claim that in general it is not possible to enforce non-
sequenced constraints within a representational schema. Since
non-sequenced constraints can reference arbitrary sections of
time that don’t necessarily correspond to slice lifetimes or
schema change (schema wall) boundaries, it is impossible to
use XML Schema to isolate and thus validate these sections.
For example, consider the simple non-sequenced cardinality
constraint: “There should be two or three unique suppliers in
any given year.” If the document were changed at intervals
that were less than one year in duration, we could have a
representation that looked similar to Listing 31.

...
<suppliers_RepItem>

<suppliers_Version begin="1" end="1">
<supplier id="1">IBM</supplier>
<supplier id="2">HP</supplier>

</suppliers_Version>
<suppliers_Version begin="2" end="100">
<supplier id="1">IBM</supplier>
<supplier id="3">Sun</supplier>

</suppliers_Version>
<suppliers_Version begin="100" end="600">
<supplier id="3">Sun</supplier>
<supplier id="4">Apple</supplier>

</suppliers_Version>
</suppliers_RepItem>

...

Listing 31. Squashed version. One day equals one unit
of time.
It is easy to see that there are in fact four suppliers be-
tween the times 1 and 365, violating our example contraint.
However, there is no way to construct an XML Schema to
successfully validate this, since we would need some way
to accumulate the number of unique <supplier>s across
<supplier_Version> and then check this number against
the constraint; but there is no such way to perform this
accumulation in XML Schema.

However, we do note that there exist specific circumstances
in which non-sequenced constraints may be validated. Again
consider the non-sequenced cardinality constraint: “There
should be 2 or 3 unique suppliers in any given year.” Also
suppose that the timestamps were placed at some element
above the <supplier> element and that slices were created
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exactly once per year. The result will be a representation that
closely mimics the individual slices. We see that it is possible
to create a representational schema to enforce this constraint.

...
<company_RepItem>
<company_Version begin="1" end="2">

<company>
<suppliers>

<supplier id="123"/>
<supplier id="456"/>

</suppliers>
</company>

</company_Version>
...

...

Listing 32. Item-based temporal representation #1.

...
<xs:element name="company_RepItem"
...
<xs:element name="company_Version">

...
<xs:element name="supplier">

minOccurs="2" maxOccurs="3">
...
</xs:element>

</xs:element>
</xs:element>

...

Listing 33. Non-sequenced representational schema #1.

In this case, we are guaranteed to have one <suppliers>

element per year. Thus, validating each element in each
company version will validate the constraint.

As another example, consider the non-sequenced cardinality
constraint: “There should be between 2 and 4 players on the
team in any given year.” If the slices happen to have a one-
to-one correspondence with the boundaries for a year, and the
timestamp happens to be at or above the <team> element,
then we could have the following representational schema.

...
<team_RepItem>
<team_Version begin="1" end="1">
<team>

<player>Steve</player>
<player>Bob</player>
<player>Mark</player>
<player>Paul</player>

</team>
</team_Version>
<team_Version begin="2" end="2">
<team>

<player>Steve</player>
</team>

</team_Version>
</team_RepItem>
...

Listing 34. Item-based temporal representation #2.

...
<xs:element name="player"

minOccurs="2" maxOccurs="4">
...

</xs:element>
...

Listing 35. Non-sequenced representational schema #2.

In general, we see that such special cases can be constructed
when both of the following conditions are met.
• Placing the physical timestamp at or above the highest

element that is involved in the constraint.

• Versioning the conventional document so that the life-
time of each slice matches the time unit specified by
the constraint (e.g., if the constraint involves one year,
then there would be exactly one slice per year).

Clearly, these situations are of limited practical use since they
are constricting and unlikely to occur naturally. Nevertheless,
one might argue that the tools could simply adopt the follow-
ing strategy. “If a special case occurs, place the functionality in
the representational schema; otherwise, place the functionality
in the tools.” We argue that this process would add complexity
that is not justified by the marginal performance gains, espe-
cially when there are multiple constraints defined and only
some would meet the special-case criteria.

11.4 Functionality of Other Representation Classes
In the above sections we considered whether constraints could
be expressed in an XML schema using the item-based repre-
sentation class. We now provide a brief commentary on the
ability of each of the remaining three representation classes to
express constraints. Briefly, the remaining three representation
classes provide the same or worse level of capability as the
item-based class.

The slice-based class allows the same set of constraints
to be expressed as the item-based class. This is because the
slice-based class is a special case of the item-based class;
it possesses no unique characteristics and thus the same
limitations apply. The reference-based class also allows the
same set to be expressed. This can be seen by viewing the
reference-based class as an optimized, but similar version of
the item-based class. The reference-based class has the same
structure as the item-based class (e.g., items, versions, physical
timestamps); the only difference is that the reference-based
class avoids data duplication by providing multiple references
to subtrees that occur more than once. This process does not
gain the reference-based class any benefits that can be used to
enforce constraints. The edit-based class is not able to express
any temporal constraints within the representational schema
since it reduces changes to the XML tree to simple text content
that cannot reliably be parsed and examined.

11.5 Placement of Functionality
For those constraints that can be implemented within either
the representational schema or the tools (i.e., sequenced car-
dinality and datatype constraints), the question remains: where
should the functionality be placed? To address this question,
we provide a discussion below.

Consider the model of validation used by τXMLLINT
shown in Figure 7. First, the temporal document is validated
against the representational schema using a conventional val-
idator (i.e., XMLLINT). Then the Temporal Constraint Val-
idator Module is invoked to explicitly and exhaustively check
all temporal constraints. This module uses DOM to parse
and traverse each slice and manually checks each constraint
present in the logical annotation set. From the description
of these steps we draw two simple observations. First, the
conventional validator is always invoked on the temporal
document, no matter which constraints are being implemented
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in the representational schema. Second, temporal constraints
which are “hard” to implement are done so using DOM.
Thus, since the conventional validator is empirically much
faster than DOM, and is being invoked anyway, we argue
that all constraints, when possible, should be implemented
within the representational schema. This will provide much
better performance in terms of time required, and as we
have shown in the previous sections, will not greatly increase
the complexity of the representational schema. Furthermore,
SCHEMAMAPPER will not require extensive modifications in
order to create a schema that can enforce these constraints,
since the transformation is trivial in most cases and relatively
simple in the rest.

For these reasons, we conclude that the functionality of
sequenced cardinality and datatype constraints be placed
within the representational schema and not within the temporal
constraint validator.

12 CONCLUSION AND FUTURE WORK

[TODO: Rick]
did not copy paste from TR; overlap seemed minimal
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